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 Chapter 1 

Methods for Laser Cooling of Solids 
 

1.1 Introduction 
The topic of laser cooling began with the articles of Pringsheim

1
 and Hansch

2
 long before any 

laboratory experiments were undertaken. These early papers proposed the use of optical radiation to 

remove energy from matter for the purpose of refrigeration, but the mere idea that light could 

transport thermal energy was widely doubted until Landau’s thermodynamic analysis showed that 

radiation fields had entropy that depended on the statistics and mode structure of the field
3
. The 

influence of various states of the field on solid state cooling was examined in detail later
4
, but once it 

was realized that entropy of fields could be exchanged for entropy of matter the stage was already 

set for a concerted worldwide effort to alter the temperature of collections of atoms with light.  

 Experiments to observe laser cooling of atomic motion in gases originated from 

investigations of the mechanical effects of radiation pressure on small dielectric particles
5
. Similarly, 

optical refrigeration of solids was preceded by demonstrations that the amplitude of axial vibrations 

of mirrors could be reduced in Fabry-Perot resonators
6
.  Reductions of this kind were accomplished 

by monitoring excursions of the cavity from resonance and using the error signal to control mirror 

position with variations of light pressure applied to the back side of one of the cavity mirrors. 

However this type of opto-mechanical feedback does not lead to overall refrigeration because it does 

not reduce the amplitude of internal modes of vibration irreversibly.  Some modes are heated while 

others are cooled. To refrigerate a solid, light must do more than redistribute vibrational energy 

among the available modes. Ideally a low entropy (single-mode) input field couples to one or more 

vibrational or translational modes, undergoes an increase in entropy during its interaction with the 

sample, and then carries that entropy away via radiative transport into space. 

 Laser cooling techniques for solids can build on past experience in atomic vapors. In gases 

the motion of atoms along a chosen direction can be exploited to shift “hot” atoms preferentially into 

resonance with light propagating opposite to their motion via the Doppler effect
7
.  In this way the 

momentum of the light wave is transferred to fast-moving atoms selectively, gradually slowing them 

down through the accumulated effect of many opposing photon interactions. In condensed matter 

however, free translational motion is absent. As a consequence, one might think that laser cooling in 

glasses or crystals has to exploit completely different principles.  Yet there are analogies to the 

Doppler effect in solids and ways to address the energy and momentum of collective excitations of 

the medium that are reminiscent of interactions with free atoms. Hence this chapter reviews several 

methods with this perspective in mind, attempting to profit from the earlier history of laser cooling 

in gases and to provide points of comparison between different techniques.   

 Researchers face the challenge of developing the most effective means of controlling the 

temperature of macroscopic objects with light.  Success on this front will make possible the thermal 

management of hot spots in micro-mechanical or integrated electronic devices, improved operation 

of high power lasers through radiation-balancing, and low temperature operation of active devices in 

vacuum where cooling improves sensitivity but is only possible through radiative transport.  

 

1.2. Cooling with Anti-Stokes Fluorescence  

The earliest demonstration of optical refrigeration of a solid relied on inducing anti-Stokes 

fluorescence by simply tuning the wavelength of incident light to the “red” or low energy side of an 

impurity resonance
8
.  When vibronic coupling of the medium is weak, the detuning is into the 

spectral wing of an essentially pure electronic transition.  When the vibronic coupling is strong, a 
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condition characterized by a large Huang-Rhys factor
9
, the light is detuned into the phonon sideband 

associated with the electronic transition. Then, consistent with quantum theory
10

, the absorption of 

photons on the low energy side of resonance is followed on average by photon emission at the center 

frequency of the transition.  In this circumstance an overall loss of energy is imposed even on 

stationary atoms (Fig. 1).  Hence this general approach has met with considerable success in 

demonstrations of cooling in rare earth solids
11

, liquids
12

, semiconductors
13

, and internal acoustic 

modes of optomechanical resonators
14

.   

 The efficiency of cooling that relies on inducing anti-Stokes fluorescence can easily be 

estimated.  In the 2-level system of Fig. 1, an amount of energy given by h  is added to the 

system for each absorbed photon. Energy flh  is removed by each fluorescent photon.  Hence if 

these two steps account for all system dynamics, then an input power of inP  produces a cooling 

power per absorbed photon of 
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and the cooling efficiency would be LLflinc PP  /)(/  .  However in the presence of 

non-radiative relaxation, which is commonplace in rare earth solids, the radiative quantum 

efficiency is lowered.  Radiative and non-radiative decay at rates rW  and nrW then contribute an 

external efficiency factor of the form )/( nrrrext WWW  .  When corrected for fluorescence 

escape efficiency e , which is the fraction of emitted photons that escape the sample, this factor 

becomes 

 )/( nrrereext WWW   .        (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Anti-Stokes fluorescence emission in a 2 –level system. 

 

Additionally, only a fraction of the absorbed photons result in excitation of coolant atoms. The 

rest are absorbed by background impurities. With the absorption coefficient of the coolant atoms 

designated by c  and that of the background by b , the proportion of absorbed photons that 

contribute to cooling is  
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If the assumption is made that phonon-mediated absorption is proportional to the occupation 

probability of the phonon mode, namely 
1)1]/(exp[  Tkn B , the efficiency becomes 

)/( bccabs nn   . Then at high temperatures (  TkB ), abs  varies little with 

temperature when the background absorption is low ( 1/ cb  ). On the other hand at low 

temperatures, as 0n , abs  decreases in proportion to n . Hence the absorption efficiency 

drops dramatically through the important cryogenic regime. The overall cooling is determined by 

the product of the various efficiency factors. 

 
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fl
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From (1) and (4) it is easy to show that the cooling power density per unit frequency is 

  /)(/  fltotextabsc IVP . Here )(0  gII   is the intensity per unit frequency and )(g  

is a normalized spectral lineshape function.  V is the interaction volume. If the bandwidth of the 

light source equals the full linewidth 2  of the optical transition, and the density of atoms in the 

interaction volume is N/V, the energy loss rate per atom is  

 )/()/(2 0 NVINVIR totctotc    .      (5) 

The condition for net cooling can be expressed in a simple way based on Eq. (4), since c  must 

exceed zero. By assuming that the laser detuning is optimized at the phonon frequency  , we 

can rewrite the numerator using   hh fl .  Furthermore the average phonon energy is 

TkB  near the boundary of the classical regime
15

. Then the condition for laser cooling 

)0( c  becomes 

 



h

TkB
absext  1 .         (6) 

An important limitation of refrigeration based on anti-Stokes fluorescence emerges from this 

condition by determining the temperature at which the cooling efficiency drops to zero ( 0c ).  

By solving (6) as an equality, it is found that a lower bound exists for the attainable temperature. 

The minimum temperature minT that can be reached with anti-Stokes cooling found from (6) is 
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.       (7) 

According to (7), if the quantum efficiency is high ( 1ext ), the temperature limit for laser 

cooling by anti-Stokes emission is primarily determined by the frequency of light and the ratio of 

background to resonant absorption.  The dependence on these two factors arises because heat 

input to the system is proportional to incident photon energy and absorptive heating efficiency.  

Only when the background absorption coefficient vanishes could arbitrarily low temperatures be 

reached.  For the moderate levels of background absorption encountered in practice in solids, this 

places a severe constraint on temperatures that can be reached by laser cooling. As a simple 

example of this, the anti-Stokes cooling limit predicted by (7) at a wavelength of 1 micron is 

3.145min T K when the external quantum efficiency is 90.0ext  and background absorption 

coefficient is 1000/cb   . 
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 The lower bound on attainable temperatures can be interpreted in another way. It arises 

because the cooling rate depends on phonon occupation, a factor which diminishes as temperature 

decreases.  Eventually the rate of anti-Stokes cooling drops below the rate of heating from 

background impurity absorption and cooling is no longer possible
16

.  For 3-D refrigeration of solids 

to be as effective as laser cooling of gases, techniques capable of maintaining high rates of cooling 

through the cryogenic temperature range are needed. This is discussed further in what follows. 

 In the remainder of this chapter momentum is incorporated into the discussion to investigate 

whether the fundamental temperature limitation of anti-Stokes fluorescence cooling can be evaded 

when the dynamics are viewed comprehensively. Judging from the successes of laser cooling of 

gases, cooling schemes that conserve momentum and energy simultaneously during optical 

interactions are the most efficient.  Yet momentum is disregarded in the anti-Stokes fluorescence 

method. Other techniques may offer the capability of balancing the momentum and energy 

requirements more consistently to accommodate phonon dispersion (Fig. 2).  

 

1.3 Brillouin Cooling 
In gases the link between linear momentum and the absorption of a photon is simple.  For each 

photon absorbed, the linear momentum of an approaching atom decreases by an average of k .  

Translational momentum is thereby reduced, provided fluorescence randomizes the direction of re-

emitted photons.  In solids things are not so simple because free translation of atoms cannot take 

place. Atomic displacements are oscillatory.  Motion is conveyed in collective waves and 

momentum is distributed as illustrated in Fig. 2.  Nevertheless, charge motions associated with 

departures of atoms from their equilibrium positions have Fourier components with well-defined 

amplitude, momentum, and energy
11

. Moreover, Doppler-shifted interactions with these phonon  

 

 

 
 

 

Figure 2. (Left) Dispersion curves illustrating the variation of phonon frequency   with wavevector 

q for transverse acoustic (TA) and optic modes (TO). The lattice constant is a. (Right) Particle 

displacements in a diatomic linear lattice for TO (upper) and TA (lower) modes of the same 

wavelength. 

 

modes are well-known to take place in acousto-optic (Brillouin) scattering
15

.  So analogies to 

Doppler cooling methods in gases are useful.  At this point we therefore formulate the problem of 

light interacting with acoustic and optical modes of vibration in terms of interaction Hamiltonians 

and equations of motion that display momentum explicitly. Two recent developments are reviewed.  
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The most detailed consideration is given to laser cooling by stimulated Raman scattering because in 

theory it furnishes a cooling rate that is independent of temperature. 

 The energy of interaction between light and a solid derives from the electron-phonon 

interaction in which the force of light acts to displace ions from equilibrium by an amount ).(tR   

This displacement can be written as a Fourier expansion in terms of normal modes of polarization 

 k
ˆ ( 3,2,1 ), amplitude qQ , wavevector q  and frequency q .  For an ion situated at 

equilibrium position 0R  in a solid, undergoing motion described by a single phonon mode, the 

displacement consists of only one Fourier term. 

 ]exp[ˆ),()()( 0

2/1 RqitQNMtR    .      (8) 

̂  is the polarization vector, N is the number of particles, and M is the particle mass. The form of the 

interaction Hamiltonian is given by force times distance. 

 RVH I            (9) 

The quantized form of IH  depends on the coupling mechanism between light and the vibrational 

mode of interest, so the cases of acoustic and optical vibrational modes are considered separately 

below.  

 For transverse acoustic modes, which are propagating density fluctuations, the light-matter 

interaction is determined by electrostrictive deformations of the medium because transverse optical 

fields cannot couple directly to longitudinal waves.  The energy dependence of acoustic and optical 

modes on wavevector is shown in Fig. 2. To generate pressure waves, a deformation potential
17

 is 

needed of the form 

  ˆ)( *

21

*

21 EqEEEV  .         (10) 

Here  

 )ˆˆ(),(
)(

1

)(

11
11 kztikzti

k eaeatzE
 

       (11) 

 and  

 )ˆˆ(),(
)][(

2

)][(

2

*

2
22 zqktizqkti

qk eaeatzE


 
       (12) 

are quantized pump and anti-Stokes fields, Vkk 02/   is the field per photon, and 

0
)]/([    is the electrostrictive constant relating changes of permittivity to changes of 

density
18

. The operator for normalized mode amplitude is related to the phonon creation ( b̂ ) and 

annihilation (
b̂ ) operators by  

 ])exp[ˆ]exp[ˆ(
2

),(ˆ
2/1

tibtibtQ qq 









 

.     (13) 

When Eqs. (8, 10-13) are combined with (9) the interaction Hamiltonian becomes 

 ]exp[),()ˆ()( 0

2/1 RqitQVNMH I          

  .).ˆˆ( chaabf kqkq  



 ,       (14) 

where the interaction strength is defined as qkkqVNMf 

 2/1)2(  .  V  is the volume of 

interaction. The conservation of momentum in the interaction is illustrated in Fig. 3.  

 The Hamiltonian can be used to calculate temporal changes in the vibrational energy (or 

temperature) of the medium.  To appreciate the connection between IH  and vibrational energy or 

temperature, note that the conjugate momentum of the vibrational amplitude ),(ˆ tQ   is  
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 ])exp[ˆ]exp[ˆ(
2

),(ˆ
2/1

tibtibitP 






 
 

.     (15) 

When Q̂  and P̂  are defined as above, the single mode Hamiltonian specifying vibrational energy 

reduces to a familiar form. 

 .).ˆˆ()ˆˆˆˆ(
2
12

2
1 chbbQQPPH qqqqqqqqq  

  .    (16) 

Taking all possible modes into account, the total energy is therefore found to be 

   









,

2
1

,

)ˆˆ(
q

qqq

q

q bbHH  .       (17) 

Since   qqq bbn ˆˆˆ is the number of phonons in mode q, the summation in Eq. (17) describes 

the total vibrational energy of the medium as a weighted sum of the individual mode energies 

which in turn determines the sample temperature.  

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.  Wavevector diagram for phonon scattering through angle  .  Phonon frequency   

and wavevector 12 kkq   conserve energy and linear momentum in the wave interaction 

involving optical fields )( 11 E  and )( 22 E . 

 

 With the interaction Hamiltonian of Eq. (14) in hand, optically-driven dynamics of two 

optical waves interacting with an acoustic mode can be analyzed.  The static Hamiltonian 
  bbaaaaH ˆˆˆˆˆˆ

2221110    plays no role in steady-state dynamics. For example the 

change of phonon occupation with time can be calculated using the Heisenberg equation of 

motion  

  ]ˆ,)[/(ˆ
int0 nHHinb    

     bbchaabfi ˆˆ.),.ˆˆˆ()/( 12  

     1212
ˆˆ)ˆˆ(ˆ)ˆˆ(ˆˆˆ aabbbbbaabif .     (18) 

The first term on the right determines the rate of annihilation of phonons while the second term 

is the rate of creation.  We can show this explicitly by solving for the temporal behavior of 
b̂  

and b̂ , again using the Heisenberg picture.  

 
  bbaabifbaabifbidtbd b

ˆˆˆˆˆˆˆˆˆˆ)/ˆ( 2121     (19) 

 
  bbaabifbaabifbidtbd b

ˆˆˆˆˆˆˆˆˆˆ)/ˆ( 2121     (20) 

,  q 

  
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Making use of the Slowly-Varying Envelope Approximation (S.V.E.A.), steady-state solutions 

for the operator amplitudes are simply 

   bbaabifbaabifb   /ˆˆˆˆˆˆˆˆˆ
2121 ,       (21) 

   bbaabifbaabifb   /ˆˆˆˆˆˆˆˆˆ
2121 .      (22) 

With these substitutions one finds that the net rate of change of phonon occupation in the state 

bnnn 21 is determined by the balance of annihilation versus creation. 

   bbbb nnnbbaabaabifbaabifnnnifn   /)ˆˆ(ˆˆˆˆˆˆˆˆˆˆˆ
1212212121

  

   bbb nnnbbaabaabifbaabifnnnif   /)ˆˆ(ˆˆˆˆˆˆˆˆˆˆ
1212212121   (23) 

Upon evaluation of the matrix elements we obtain the rate equation for phonon occupation. 

 )1()1)(/()1()/( 21

2

21

2  bbbbb nnnfnnnfn .     (24) 

The first term on the right side of Eq. (24) describes cooling while the second describes heating. 

Possible detuning of the modes has been ignored in this analysis. The phonon annihilation rate 

for resonant Brillouin scattering in the interaction volume is therefore the coefficient of the first 

term in (24). 

 bbB nnnf )1()/( 21

2          (25) 

The energy loss rate takes into account the phonon frequency. 

   bbB nnnfR )1()/( 21

2 .      (26)  

Laser cooling is realized if conversion of an optical pump wave to an anti-Stokes wave prevails 

over its conversion to a Stokes-shifted wave
19

. Brillouin cooling of a mechanical mode was first 

demonstrated in a micro-resonator by simultaneously matching its momentum and energy to the 

difference of wavevectors and frequencies of the pump and anti-Stokes waves
14

. To do this the 

pump and anti-Stokes waves were simultaneously enhanced in the resonator while the Stokes 

component of Brillouin scattering was suppressed by wavevector mismatch. 

 

1.4 Raman Cooling 
In this section stimulated scattering is considered for the cooling of solids.  The general theory of 

stimulated Brillouin and Raman scattering
20,21

 was developed in the 1960s and despite the 

complexity of equations coupling the various mode amplitudes Louisell
22 

pointed out that the 

interaction energy is just the added electromagnetic energy resulting from a change in the 

permittivity  , or 2

2
1 EH I   . This perspective facilitates the analysis of both Brillouin and 

Raman scattering since it is straightforward to write   to reflect one interaction or the other.  In the 

last section the dielectric fluctuation in Brillouin scattering was written )/( xQ    to describe 

electrostriction by the incident light. In this section   arises from dielectric fluctuations due to 

transverse charge motion caused directly by the light field itself. We shall proceed as before 

nevertheless, writing down the interaction Hamiltonian using Eq. (9), since the deformation potential 

approach is equivalent to that of Louisell. 

 For transverse optical modes, the net optical electric field can act directly on charged ions at 

the difference frequency to create or destroy optical phonons.  In this case the potential is just the 

optical energy density at the mode frequency.  Hence the gradient of the potential in Eq. (9) is 

 ˆ)( *

210 EEV  , and the single mode interaction Hamiltonian is 
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  .).ˆˆˆ(' 21 chbaaf           (26) 

where qkkVqNMf 

  0

2/1)2('   is the coupling strength in the interaction volume V. By 

careful selection of the frequencies and wavevectors of two optical fields, the energy and momentum 

can be conserved for optical modes just as for acoustic modes (Fig. 3). 

 Two-photon Raman transitions (Fig. 4) can couple to optical modes of vibration purely 

through anti-Stokes scattering.  Consequently they can be utilized for efficient cooling.  Early 

analysis and experiments on Raman cooling may be found in Refs. 23-25. Here we follow Ref. 26 to 

analyze how the Raman technique can be adapted to cooling solids and to estimate the cooling rate. 

The potential advantages of applying adiabatic rapid passage to this technique are also considered. 

The fact that the cooling rate is temperature independent is emphasized.   

 With pulsed excitation, the two fields at 1  and 2  in Fig. 4 cause the system population to 

evolve in the direction indicated by wiggly arrows. The light drives population from state 1 to state 3 

at a rate determined by the one- and two-photon detunings   and  . The 21   and 32   

transitions are assumed to be electric-dipole allowed. The selection rules therefore dictate that state 3 

is a long-lived storage state.  For prolonged excitation, population builds up in level 3 and the 

reverse process begins to take place at a comparable rate.  For the 2-photon detuning shown in the 

figure, a small energy deficit (  ) and momentum reduction ( k2 ) is incurred for each Raman 

cycle, provided the pulses are short enough to avoid substantial buildup of population
27

 in state 3.  

Atoms with a velocity centered at mk /2v   lose kinetic energy.  By emptying state 3 periodically 

with a fast, random process like fluorescence, changes in the energy and momentum distributions 

become irreversible through an increase in the entropy
3,4 

of the outgoing radiation field
28

.  Hence the 

ensemble of atoms can be progressively cooled.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  A 3-level system undergoing a 2-photon Raman process.    12  is the 1-photon 

detuning and )( 2113    is the 2-photon detuning. 

 

 To estimate the stimulated Raman transition rate for the 31   transition it is instructive to 

develop a sense of the importance of "forward" and "backward" pumping processes between states 1 
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and 3 (Figures 4 and 5 respectively).  It is easily shown that the net rate of change of population is 

zero in steady-state because of the balance of these two processes, which provide cooling and 

heating respectively.  One can also show that the transition rate for a single process is given by the 

square of an off-diagonal (coherence) element of the density matrix that may be evaluated 

straightforwardly to allow estimation of cooling rates. 

 The net rate of population change in excited state 3 is just dtd /3333   .  In the weak field 

limit the wavefunction is dominated by its ground state component, which varies little with time.  

Hence we may assume 1*

1111  cc  in order to calculate the transition rate 

     13311331

*

31

*

1333 33113333    cccc
dt

d

dt

d
.  (27) 

Since *

1331    and 1331   , one finds 3113

*

1331  i   and 131313  i .  The result is 

that the two contributions to 33  given in Eq. (27) are equal and opposite.  Under steady-state 

conditions the occupation of state 3 therefore does not change. 

 0
2

1313

2

131333   ii        (28) 

The rate at which level 3 population increases is determined by the positive term in (28) assuming 

one vibrational quantum occupies the mode.  The transition rate per atom per unit (angular 

frequency) excitation bandwidth that leads to cooling is therefore 

  
2

131333 /   .         (29) 

To determine the rate itself from the field-driven coherence in (29) the source bandwidth must be 

specified. Taking this to equal the full transition linewidth 132 in the discussion below, it remains 

only to calculate the matrix element 13  explicitly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Raman interaction of fields )( 11 E  and )( 22 E  in time-reversed (“backward”) sequence. 

 

For quasi, steady-state fields the interaction Hamiltonian can be written 

 .).)exp((.).)exp(( 2232
1

1122
1 ccticctiV    .    (30) 

Contributions to state 3 dynamics other than the one depicted in Fig. 4 will be ignored owing to their 

large detunings from resonance.  The first order coherence is therefore given by the standard first 

order perturbation expression
29

: 
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 )(
2/~ )0(

22

)0(

11

121

12)1(

12  













i
.       (31) 

The second order coherence established by the forward Raman process is obtained by solving the 

second order transport equation  

 )2(

131313

)1()1()2(

1331

)2(

13 ],[)(    iVi .     (32) 

The 2-photon coherence oscillates at the frequency of the (combined) driving fields.  So if the 

slowly-varying envelope approximation is adopted, the form of 13  is 

 ])(exp[~)( 21

)2(

13

)2(

13 tit   .       (33) 

By substituting Eqs. (30), (31) and (33) into (32) and grouping terms with the same time 

dependence, one finds the solution for the coherence to be 

 





























 )(

]][[

4/~ )0(

22

)0(

11

132121

*

2312)2(

13 
ii

.     (34) 

The second denominator incorporates the 2-photon detuning )( 21312   . Using this result 

in Eq. (29), the Raman transition rate per atom is obtained with an appropriate assumption regarding 

excitation bandwidth. If the excitation matches the bandwidth of the Raman transition )2( 13 , the 

number of phonon annihilations per impurity atom per second is 

 
2

13

2
)2(

1313 2~2 iMfnnR   ,     (35) 

where adjustment has been made for the number of phonons occupying the mode using the Planck 

distribution 
1)1]/(exp[  Tkn B . In this model the implicit summation over intermediate 

states in the matrix element iMf  reduces to a single term:  

 
2

21

132121

1

)(

2

)(

4

)(*)(

]][[

1ˆ22ˆ3



 


















EE

ii

ee
iMf

ee

.    (36) 

The rate of energy loss is therefore 

  
2

132 iMfnR R .       (37) 

This rate applies to each atom in the interaction volume because it was calculated using the density 

matrix which is normalized to the number of coolant ions. To realize this cooling rate in practice, the 

optical interaction must be made irreversible. To this point, the dynamics we have described are 

coherent and proceed as readily in the “forward” direction as the “backward” direction.  We must 

ensure that the second term in (27) describing reverse transitions is negligible. Also the overall 

efficiency may benefit from interaction with more than one mode at a time. So we briefly consider 

these aspects of Raman cooling next with the aid of Fig. 6.  

 Refrigeration requires irreversibility. The coherent (reversible) Raman process outlined 

above must therefore be combined with a random process that increases the entropy of outgoing 

radiation
4
 without decreasing efficiency.  For this purpose fluorescence on an allowed transition at 

frequency 4  can be induced by a strong "repump" beam (at frequency 3 ) as illustrated 

schematically in Fig. 6.  To avoid lowering the rate of cooling set by anti-Stokes Raman transitions,  

the return of excited state population to the ground state should be fast.  Provided state 3 is emptied 

at a rate faster than the Raman excitation process which fills it, and no extra heat is generated in the 

process, efficient cooling will be maintained. 
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 Improvement in the Raman cooling rate can be anticipated by interacting with a range of 

vibrational modes during each cooling cycle.  More than one mode could be addressed for example 

by rapid scanning the 2-photon detuning   in discrete steps
27

 or by using some form of adiabatic 

passage.  Reversal of the temporal order of two fixed frequency pulses can transfer population 

between two discrete states with nearly unit efficiency at a fixed detuning.  However for rapid 

cooling over a broad range of phonon frequencies, rapid adiabatic passage is a superior method in 

which the excitation detuning is swept from one side of Raman resonance to the other adiabatically.  

This approach can be implemented very simply by imposing a "chirp" on )(t .  By sweeping the 

frequency rapidly from one side of resonance to the other, all phonons with frequencies between the 

endpoints max  of the chirp are cooled at once
30

. 

 The need to avoid heat generation during the repump cycle affects how closely the repump 

beam may be tuned to resonance.  The criterion for optimizing one-photon detuning in Raman 

cooling of solids is different from that for gases because the configuration of neighboring atoms 

surrounding a coolant atom changes as the dipole forms during transition of a coolant atom from a 

low to a high energy state.  That is, the equilibrium positions of neighbors change in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  The coherent Raman process (dashed arrows) must be followed by random emission for 

there to be net cooling.  Here, spontaneous emission is induced at 4  with a pump source at 

frequency 3  that returns population from state 3 to state 1.   

 

response to the absorption process.  Phonons are unavoidably generated by relaxation of this 

non-equilibrium configuration unless the light is detuned on the red side of resonance by more 

than the phonon energy.  

 In the illustration of Fig. 7, detuning requirements are considered in the context of energy 

levels of Ce
3+

  ions.  Given the electronic structure of Ce
3+

 , the laser must be detuned by an 

amount equal to or greater than the Stokes shift of the longest wavelength 4f
n-1

 5d↔4f
n
 

transition.  For Ce
3+

 this means 

  FStokesLaser  ,          (38) 
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where F is the energy separating the 2/5

2 F  and 2/7

2 F  energy levels. This choice ensures that 

absorbed photons have less than the energy required to generate either a vibrationally-excited 

upper state or a vibrationally-excited ground state.  In the Ce
3+

 system, cooling ought to 

maximize when both the Raman and repump beams are detuned by FStokesLaser  .  In 

practice, smaller detunings might improve the cooling if the transition rate from the 5d state to 

2/7

2 F  is less than that to 2/5

2 F  as it is in Ce:YAG
31

. Despite the reduction in cooling rate that 

large detunings incur in general, high overall cooling rates can be achieved when the excited 

state is exceptionally broad, as predicted
26

 for the 5d state of Ce
3+

 . 

 To conclude this chapter we emphasize two key advantages of Raman cooling of solids, 

namely that the cooling rate is temperature independent and that the cooling process is divided 

into two main steps involving different levels, thereby permitting separate optimization of 

absorption and fluorescence. At low temperatures, the phonon occupation factor in Eq. (27) 

drops below one and varies as )/exp( Tkn B  .  In this non-classical regime, any cooling  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Energy levels and detunings involved in Raman laser cooling of a 3-level coolant atom 

in a solid. The example is based on the electronic structure of Ce
3+

. 
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rate that is solely proportional to  n  falls exponentially as temperature decreases.  Indeed R  

is proportional to  n  according to Eq. (35), just like the rate for anti-Stokes fluorescence 

cooling. However the phonon-broadened linewidth 13 of the Raman transition is strongly 

temperature-dependent and offsets the decline with a matching proportionality to  n  of its 

own. In the model below there is complete cancellation of factors of  n  in Eq. (35) at 2-

photon resonance. Since the transition to state 3 is detuned by the phonon frequency below the 

terminal electronic state (see Fig. 4), the relevant resonant condition is 02  . 

 While other mechanisms may contribute, we assume here that the Raman linewidth is 

governed primarily by a 2-phonon Orbach process
32

.  Thus it can be modeled as 

 ]/[1)( 0

'

0013  nT .  In this expression 0  is the limiting inhomogeneous linewidth at 

zero temperature.  When 0

'

0   the linewidth reduces to '

013 )(  nT .  Upon substitution 

into Eq.(35) with zero 2-photon detuning ( 02  ), the rate of phonon annihilation per atom 

becomes constant. 

 
2

'

0

'
2

iMfR


 .         (39) 

In this expression the modified matrix element M’ appears because of the cancellation between 

 n  and 2-photon linewidth factors in the Orbach model outlined above. Its definition is 

 
2

21

121

1

)(

2

)(

4

)(*)(

][

1ˆ22ˆ3
'



 


















EE

i

ee
iMf

ee

.    (40) 

The energy loss rate per atom, 

 


 
2

'

0

'
2

iMfR R ,       (41) 

 is similarly expected to be temperature independent over the entire range 0 TkB . Unlike 

acoustic modes, optical phonons have very little dispersion (Fig. 2).  Consequently the frequency 

of the dominant optical phonon does not vary significantly and R remains constant over a wide 

range of temperature.   

The one-dimensional Raman interaction described above involves a phonon near the 

center of the Brillouin zone propagating along a single optical axis.  However zone center 

phonons cannot participate directly in the collisional processes that establish thermal equilibrium 

within the phonon distribution.  Hence it is natural to inquire as to how effectively a mode that is 

cooled irreversibly can equilibrate with the reservoir of other phonons in the solid.  Restoration 

of equilibrium in solids is governed by Umklapp processes, phonon collisions requiring a 

reciprocal lattice vector G to conserve momentum
33

.  Zone center phonons have low 

wavevectors, so when two phonons interact with a third via an Umklapp process, there is no way 

to satisfy the relation Gkkk  321 with a wavevector G  that spans the entire Brillouin zone.  

To achieve uniform cooling of even a single mode, phonons propagating along orthogonal axes 

should be addressed, and this calls for the introduction of two more sets of counter-propagating 

Raman beam pairs to cover all three orthogonal space axes.  Additionally, beam switching along 

each axis is needed to interrogate both forward- and backward-travelling phonons of the same 

frequency.  Fast directional switching of each beam pair can be implemented with a Pockel's cell 
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that reverses the propagation direction of the 1  and 2  beams simultaneously within the 

sample
28

 on a timescale much shorter than the lifetime of the 2/7

2 F  shelving state.   

While uniform cooling of one mode can be assured by such procedures, thermal 

equilibration of the sample as a whole relies on Umklapp processes that involve phonons of 

wavevector G .  Although the occupation probability of such phonons drops exponentially with 

decreasing temperature, the thermal conductivity which is proportional to phonon mean free path 

actually rises through most of the cryogenic range.  Hence sample equilibration times drop until 

temperatures around 10-20 K are reached.  Then the mean free path becomes limited by sample 

dimensions and thermal conductivity drops as T
3
 due to its proportionality to specific heat

33
.  The 

consequence of this is that fast thermal equilibration can be anticipated in Raman laser-cooling 

of solids at all but the very lowest (T<10 K) temperatures. 
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