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Optically induced magnetization in homogeneous,
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A widely held viewpoint in optics, namely, that dynamic magnetic effects are extremely weak at optical fre-
quencies, is re-examined. Nonlinear charge motion induced by the optical magnetic field in dielectric systems
is analyzed, is predicted to be resonantly enhanced, and is observed experimentally in CCl4, C6H6, and H2O at
the fundamental input frequency. Excellent agreement is obtained with a classical magnetic harmonic oscilla-
tor model, which shows that the maximum dynamic magnetic dipole (MD) moment at optical frequencies is one
half the electric dipole (ED) moment. As a consequence, magnetic dipole radiation generated by the optical
magnetic field with an intensity one fourth that of ED radiation, as well as unanticipated nonlinear optical
effects such as magnetic white-light generation, can arise in homogeneous transparent dielectrics. The mecha-
nism of MD formation is confirmed experimentally to be second order in the input field, and the strength of the
radiation is accounted for as a first-order contribution to the vector potential. Predictions are made of optical
magnetic resonance, negative permeability, self-induced magnetic birefringence, and optically induced
Faraday rotation. © 2008 Optical Society of America

OCIS codes: 190.0190, 190.4410, 190.7710, 320.7110, 350.3618.
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. INTRODUCTION
s is well-known, radiation fields can be calculated in a
imple way from the motion of charges in a source region
f interest using the vector potential Ā�r̄ , t�. When decom-
osed into multipole contributions the source current in
he leading term of Ā�r̄ , t� is taken to point along the in-
ident electric field Ē�r̄ , t� and to give rise to an oscillating
lectric dipole (ED). This is because only the electric field
an generate linear charge acceleration and, in the case of
lane waves, the magnetic force on a charge q traveling at
elocity v is F̄m=q�v̄� k̂� Ē /c� where k̂ is the direction of
ropagation. This is smaller than the electric force by v /c,
here c is the velocity of light in vacuum. At nonrelativ-

stic intensities �I�1018 W/cm2� scattered fields are
herefore expected to be dominated by electric dipole ra-
iation. In this paper it is nevertheless shown theoreti-
ally and experimentally that charge motion perpendicu-
ar to the electric field that is nonlinear and magnetic in
rigin can have important consequences at optical
requencies in transparent dielectrics at moderate
ntensities.

Historically the idea of producing magnetization by
ptical means dates back to the beginning of nonlinear op-
ics. In 1961, Pitaevski [1], Shen and Bloembergen [2],
nd others [3] described theoretically how a static magne-
ization could be generated by an “effectively magnetic”
nteraction proportional to Ē���� Ē*�−�� in the case of
ircularly polarized fields. Since that time, several groups
ave ascribed strong optically induced magnetization ef-
ects and ultrafast manipulation of static magnetizations
ith light to nonlinear, difference frequency interactions.
or a recent review, the reader is referred to [4]. Addition-
0740-3224/08/071106-12/$15.00 © 2
lly, when the optical intensity becomes high enough to
ccelerate electrons to nearly the speed of light during an
ptical cycle it is well-known that magnetic interactions
ecome important [5]. Here, however, we describe dy-
amic magnetization that is generated through the action
f the optical magnetic field B̄��� via a nonlinear interac-
ion proportional to the tensor product Ē���B̄��� at non-
elativistic intensities. Despite its dependence on two in-
ut fields (neither conjugate nor circular) this optically
nduced magnetization will presently be shown to be
ntense and to oscillate at the fundamental frequency �
ather than at a difference or harmonic frequency.

The initial terms of the multipole expansion for the vec-
or electromagnetic potential produced in the far field by
n arbitrary current distribution specified by J̄�r̄�� can be
ritten [6] as

4�

�0
Ā�r̄,t� =

1

R � J̄�r̄�,t��d3r�

− � �

�x�
�1

r��
R
� r��J̄�r̄�,t��d3r� + ¯ .

�1.1�

ere the position vector of the field point is R̄ and that of
he source is r̄�; so the vector potential depends on r̄=R̄
r̄�, the magnitude of which is just R in the far field, with
retardation of t�= t−R /c. The second term is separable

nto symmetric and antisymmetric parts that correspond
o magnetic dipole and electric quadrupole components,
espectively. Following this decomposition the ratio of the
agnetic dipole moment m (from the second term) to the
008 Optical Society of America
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D moment p (from the first term) is found to be very
mall for source regions the size of atoms or molecules at
ptical frequencies. In the experiments reported here on
olecular liquids the dipole approximation �2�a /��1� is

ertainly upheld and so one can estimate the ratio (set-
ing angular momentum of the charge to be Planck’s con-
tant �) to be

�m

p � = ��/mec

a0
� � 1, �1.2�

here me is the electron rest mass and a0 is the Bohr ra-
ius. The ratio in Eq. (1.2) is equal to the fine structure
onstant �	e2 /�c
1/137 and the relative intensity of
he magnetic dipole radiation is proportional to its
quare. Since �2 is extremely small, magnetic dipole ra-
iation originating from the second term in Eq. (1.1) is ig-
ored in optical interactions. Landau and Lifshitz [7]
tated that “there is no meaning in using magnetic sus-
eptibility from optical frequencies onward, and in dis-
ussing such phenomena we must put �=1.” However
his traditional viewpoint overlooks the possibility of a
arge oscillatory magnetic dipole moment in the first term
f Eq. (1.1), originating from a nonlinear source current.

Because the current density in the first term of Eq.
1.1) is induced by forces that cause linear and circular
otion, it can be decomposed into linear (electric) and cir-

ular (magnetic) components, J̄E,� and J̄M,�, respectively,
o obtain

Ā��r̄� =
�0e−ikr

4�r � J̄E,��r̄��d3r� +
�0e−ikr

4�r � J̄M,��r̄��d3r�

+ ¯ . �1.3�

n Eq. (1.3) the subscript � indicates that an harmonic
pproximation has been made for the time dependence of
�r̄ , t�. J̄E,� and J̄M,� are distinguished by different conti-
uity relations �̄ · J̄E,�=−�� / �t and �̄ · J̄M,�=0. J̄M oscil-

ates around the magnetic field at frequency � in the
lane formed by the electric field and the wave vector of
he light. It therefore contains a component perpendicular
o Ē and parallel to wave vector k̄.

In Eq. (1.3) the first term on the right containing J̄E,�

ields an ED. The second one containing J̄M,� can be
hown to be strictly magnetic dipole (MD). This result is
iven in Appendix A. Currents of the J̄M,� type are gener-
ted by magnetic Lorentz forces in all matter, but are
sually negligible in weak optical interactions. As we
hall show, however, the motion perpendicular to Ē can be
esonantly enhanced in bound electron systems at moder-
te intensities, resulting in magnetic dipole strengths
omparable to those of electric dipoles in the same sys-
em. In this way, magnetic effects ordinarily reserved for
he relativistic regime [5] become observable at much
ower intensities. Moreover it can be anticipated that in
ielectric media large ensembles of optical MDs of this
ype will not suffer from diamagnetic cancellation.
ecause the optically driven charge motion of bound
lectrons does not form closed current loops (at nonrela-
ivistic intensities), no opposing current cancellation can
ake place between neighboring molecules. The macro-
copic magnetic response will be additive and large like
lectric polarization.

In Section 2 a model is developed for simple harmonic
adial and torsional motion of bound charges interacting
ith light. The treatment is restricted to linear restoring

orces (or a parabolic intramolecular potential) to empha-
ize that none of the results described in this paper are
elated to nonlinear electric field effects—proportional to
2, E3, etc. Such terms, mediated by nonparabolicity of

he intramolecular potential in nonlinear optics, are ex-
luded from the model. It is shown that a magnetic mo-
ent proportional to the incident light intensity can arise

nd grow to a maximum value of one half the ED mo-
ent. That is, the magnetic scattering intensity is pre-

icted to be quadratic with respect to input intensity be-
ow saturation �I	Is�, and to maintain a constant
roportionality with respect to the electric polarization
ver a wide range above it. In the saturation regime
I
Is�, this phenomenon mimics a magnetic scattering
rocess that is linear rather than nonlinear in the inten-
ity. The predicted polarization, frequency, intensity
ependence, and saturated relative intensity of the
agnetic scattering are all shown to be in excellent ac-

ord with experimental observations in several dielectric
iquids. This work therefore has numerous interesting
onsequences that were not realized in the early days of
onlinear optics.

. CLASSICAL THEORETICAL MODEL
lassical continuum theory accurately describes optical

nteractions far from electronic resonances. Hence the
tandard model that explains optical absorption, disper-
ion, and resonance in bound electron systems based on
ewton’s second law of motion [8] is quantitatively pre-

ise in regions of transparency. An important element of
his model is that a restoring force counterbalances the
riving force exerted on charges by the electromagnetic
elds. In the simplest case the restoring force is linear in
he displacement of electrons (charge −e and mass me)
rom equilibrium positions. Here we make the same as-
umption, but extend the idea of a radiant polarization
riven by electric displacement currents to magnetization
riven by magnetic displacement currents. Magnetic
orces are included in the equation of motion and the re-
toring forces are not assumed to be purely radial, but
ay have different components parallel and perpendicu-

ar to the main driving field Ē.
Consider a plane electromagnetic wave that is polar-

zed along x̂ and propagates along the ẑ axis through a
entrosymmetric system of charges initially at rest, as
hown in Fig. 1. The assumption of centrosymmetry is not
ecessary, but is helpful in interpreting the analytic
esults and experiments in centrosymmetric samples.
lectric and magnetic field components may be repre-
ented by
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Ē�z,t� = 1
2 x̂�E0 exp�− i��t − kz�� + c.c.�,

B̄�z,t� = 1
2 ŷ�B0 exp�− i��t − kz�� + c.c.�.

llowing for charge displacements in both the x̂ and ẑ di-
ections (due to Ē and B̄, respectively), the equation of
otion me��2r̄� /�t2�= F̄ in component form yields

�2x�t�

�t2 + �1

�x�t�

�t
+ �1

2x�t� = −
eE�t�

me
+

eB�t�

me

�z�t�

�t
, �2.1�

�2z�t�

�t2 + �2

�z�t�

�t
+ �2

2z�t� = −
eB�t�

me

�x�t�

�t
. �2.2�

ince restoring forces parallel and perpendicular to Ē are
ndependent, the corresponding force constants K1

me�1
2 and K2	me�2

2 for motion along x̂ and ẑ, respec-
ively, are assumed to be unequal �K1�K2�. Orthogonal
otions of electric charges in the intramolecular potential
ell sample different topography of the potential surface.
his is illustrated in Fig. 2, where the slope of the poten-
ial surface can be seen to differ for radial versus azi-
uthal motion of a bound charge. Similarly, the damping

oefficients �1 and �2 are assumed to be unequal ��1
�2�.
Taking the optical fields Ē and B̄ to be in phase, as they

re in vacuum and dilute media, nontransient solutions
o Eqs. (2.1) and (2.2) that describe charge motion have
he simple forms

x�t� = 1
2 �x0 exp�− i�t� + x0

* exp�i�t��, �2.3�

z�t� = 1
2 �z0 exp�− i2�t� + z0

* exp�i2�t��. �2.4�

olutions for the displacements x�t� and z�t� are needed to
etermine the magnitudes of the current densities J

ig. 1. Classical charge motion produced by an electromagnetic
ave polarized along x and propagating along z. Dashed (solid)
ertical arrows schematically indicate motion with (without) the
orentz force.
E

−Neẋ and JM=−2Neż. Solving for the amplitudes by
ubstituting Eqs. (2.3) and (2.4) into (2.1) and (2.2), we
nd

x0 =
�eE0/me�

��2 + i��1 − �1
2��1 + N��,B0��

, �2.5�

z0 =
1

2

− i��c�eE0/me�

��2 + i��1 − �1
2��4�2 + 2i��2 − �2

2��1 + N��,B0��
.

�2.6�

he magnetic renormalization factor N�� ,B0� in Eqs.
2.5) and (2.6) is given by

N��,B0� = �2�c
2/2��2 + i��1 − �1

2��4�2 + 2i��1 − �2
2�,

�2.7�

here �c	eB0 /me is the cyclotron frequency.
Notice that the charge trajectories produce oscillatory
otion along both the x̂ and ẑ directions, as indicated in
ig. 1. Charge motion along the direction of propagation

s a projection along z of the equivalent magnetic current

M�t� that oscillates at the fundamental frequency � as
lectrons curl around the B̄ field. It is important to note
hat this motion resolves itself into a doubled oscillation
long the fixed Cartesian z axis, as assumed in Eq. (2.4).
oth the z-directed oscillation at 2�, and its phase shift
y � /2 with respect to motion along the x axis, can easily
e pictured by inspection of the figure. As the charge
oves from −x0 to +x0 and back to −x0, completing one

ycle of the electric polarization, the motion along z un-
ergoes two cycles centered about a displaced origin.
ince the restoring force in our model is strictly linear,
his motion at 2� is the result of the (nonlinear) magnetic

ig. 2. Illustration of the dependence of restoring forces on di-
ection of classical motion of a charge in a simple molecular po-
ential well V�r�. The slopes of the potential (and therefore the
estoring forces) are different for motions in the two directions
ndicated by double-headed arrows.
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orce and can arise even in centrosymmetric media where
uadratic restoring forces are absent and harmonic gen-
ration by the electric field alone cannot take place. The
requency-doubled solution for z-directed motion yields a
urrent density J̄M that circulates around B̄ at frequency
. To show this explicitly, the magnetic current

J̄M����sph=JM�̂ cos �t written in spherical coordinates
an be transformed to Cartesian coordinates using the
ubstitution �̂= x̂ cos �t− ẑ sin �t. This yields

�J̄M�2���Cart = JM�x̂ cos �t − ẑ sin �t�cos �t

= 1
2JM�x̂�1 + cos 2�t� − ẑ sin 2�t�. �2.8�

hus, projection of the axial vector �J̄M����sph onto fixed
artesian axes produces two vector current components

hat are of polar character, doubles the frequency of mo-
ion, halves the amplitude, and shifts the origin of charge
otion. This shows that �J̄M����sph yields a MD oriented

arallel to B̄, oscillating at frequency � following the pre-
cription J̄M���= �̄�M̄���. However, in Cartesian coordi-
ates, the polarization responsible for MD emission at the
undamental frequency appears frequency-doubled, in a
orm that might be written as Pz�2��=−Nez0�2��, since it
s proportional to the projection of J̄M��� on z. Note that
n the present model this polarization can only generate

agnetic dipole radiation, since second-harmonic electric
ipole radiation is forbidden by centrosymmetry. More-
ver, J̄E��� obeys the charge conservation equation �̄ · J̄E

−�� /�t for electric currents, whereas J̄M��� does not
�̄ · J̄M=0�.

The frequencies of electric and magnetic resonance are
ound by setting the denominators in Eqs. (2.5) and (2.6)
qual to zero. There is a common resonance at �=�1, but
otion along z also exhibits a second resonance at

� = �2/2. �2.9�

his purely magnetic resonance condition calls for an op-
ical frequency that is half the resonant frequency of lin-
ar motion along z. This tuning requirement is signifi-
antly relaxed at high intensities, as described in a
orthcoming publication [9].

The intensity-dependent ratio of magnetic to electric
eld displacement current densities may be evaluated di-
ectly from Eqs. (2.5) and (2.6). Far from ED resonance,
his yields

R = JM/JE = 2ż/ẋ =
2��c��4�2 − �2

2�2 + �2��2�2�1/2

�4�2 − �2
2�2 + 4�2�2

2 .

�2.10�

depends linearly on the input field amplitude through
ts proportionality to �c and hence to B. Consequently the
atio of magnetic to electric emission intensity ��R2� is
redicted to rise linearly with optical intensity and to ex-
ibit purely magnetic resonant enhancement. On reso-
ance, R becomes of order unity as �c→�2.
To determine the maximum ratio Rmax of magnetic to

lectric current densities at elevated power levels, we now
ntegrate Ampère’s law using the geometry of Fig. 3 for a
lane wave propagating along the z axis with its electric
eld linearly polarized along x̂ and its magnetic field ori-
nted along ŷ. The wave impinges on an arbitrary spheri-
al volume V containing a uniform density N of bound
lectrons. These charges establish a polarization current

ensity J̄p= Ṗ̄ and a magnetic displacement current J̄M
ccording to

�̄ � H̄ = 0Ė̄ + J̄p + J̄M. �2.11�

llowing for current components parallel and perpendicu-
ar to Ē, we write

J̄p = J̄p,� + J̄p,�, J̄M = J̄M,� + J̄M,�, �2.12�

here J̄M,�=−JMẑ sin �t and J̄M,�=JMx̂ cos �t as in Eq.
2.8). Next we substitute Eq. (2.12) into Eq. (2.11).
mpère’s law can then be integrated over surface S in
ig. 3. Components perpendicular to Ē are orthogonal to

he surface normal n̂S. Hence the result is

�
S

��̄ � H̄� · ds̄ = 0�
S

Ė̄ · ds̄ +�
S

J̄p,� · ds̄ +�
S

J̄M,� · ds̄.

�2.13�

o deduce a relationship between optically induced cur-
ents J̄p and J̄M, one can specialize the calculation to op-
ical frequencies by substituting Faraday’s law ��̄
Ē� / i�� for H̄ in Eq. (2.13). Furthermore we set �
�0�1+�m�, and consider �m�1, which ostensibly limits

he estimate of Rmax to transparent media with small po-
arization and magnetization far from resonance. While
ur experiments were indeed performed in this limit, the
heoretical result obtained for Rmax below is more general,
s will become evident.
With these approximations, the integral on the left side

f Eq. (2.13) is equal to the first term on the right. Hence
ne obtains

ig. 3. Geometry for integration of Ampère’s law to determine
elative magnitudes and phases of electric and magnetic current
ensity.
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0 =�
S

J̄p,� · ds̄ +�
S

J̄M,� · ds̄, �2.14�

r

�
S

J̄M,� · ds̄ = −�
S

J̄p,� · ds̄. �2.15�

similar integration over surface S� in Fig. 3 yields

�
S�

J̄M,� · ds̄ = −�
S�

J̄p,� · ds̄. �2.16�

ecause the amplitudes of J̄M parallel and perpendicular
o the electric field are equal �JM,�=JM,�=JM�, the addi-
ion of Eqs. (2.15) and (2.16) yields the result

JM = −
1

2
�Jp�tot = −

1

2
JE. �2.17�

ince the input electric and magnetic fields are in phase,
he sign in Eq. (2.17) is a phase factor indicating that the
agnetic moment opposes the optical magnetic field. The

atio Rmax= JM /JE  =1/2 calculated in Eq. (2.17) is the
ame as the ratio of magnetic to electric dipole moments
f a perfectly conducting sphere in magnetostatics [10],
ut here it is obtained in a classical model that treats
ound electrons as the carriers of electric and magnetic
h
d
t
M
t
f
o
i
t

3
S
W
s
w
p
h
a
a

isplacement current densities at optical frequencies. It
ndicates that of all the charges displaced along x by Ē, at

ost half can turn in the B̄ field and contribute to positive
agnetic current by passing through the surface S�.
Scattered electromagnetic fields in the radiation zone
ay be calculated using the expressions [11]

Ērad =
1

4�0c2 � ��J̇̄� � r̂� � r̂

r
dV, �2.18�

H̄rad =
1

4�c � �J̇̄� � r̂

r
dV, �2.19�

here square brackets indicate evaluation at the retarded
ime and the integration is performed over source volume
. Dots indicate time derivatives and r̂ is a unit vector in

he direction of the point of observation, at a distance r
rom the scattering volume. Knowledge of the vector cur-
ent densities J̄E and J̄M (assumed to be uniform in this
ontinuum model) associated with time-varying ED and
D moments is enough to determine the electric and
agnetic dipole components of light radiated from the

ample. This can be seen explicitly by calculating the ra-
io of the magnitudes of the Poynting vector S̄= Ērad

H̄rad for electric and magnetic radiation, namely SM /SE,
iven by
SM

SE
= �� ��J̄M � r̂� � r̂dV�

r
�� ��J̄M � r̂�dV�

r
�� �� ��J̄E � r̂� � r̂dV�

r
�� ��J̄E � r̂�dV�

r
�

=
JM

2

JE
2 �� �ĴM � r̂� � r̂dV�

r
�� ĴM � r̂dV�

r
�� �� �ĴE � r̂� � r̂dV�

r
�� ĴE � r̂dV�

r
� =

JM
2

JE
2 . �2.20�
ince the maximum magnetic current density is �JM�max
RmaxJE= �1/2�JE, it follows that the ratio of far-field in-

ensities cannot exceed

SM

SE
= Rmax

2 =
1

4
. �2.21�

quation (2.21) gives the maximum possible value of the
atio R of magnetic dipole to electric dipole emission in-
ensity in dielectric materials. Based on Eq. (2.10), this
atio depends not only on intensity but also on the mate-
ial, since the magnetic resonant denominator must play
n important role in accounting quantitatively for system
esponse. A complete treatment of the dynamics, address-
ng aspects of primary parametric resonance at high

odulation index [12], is deferred to another paper [9]
owever.
Equation (2.21) shows that with full resonant enhance-
ent, the dynamic magnetic dipole moment due to the

assage of light in the nonrelativistic limit may be one
alf the electric dipole moment. The argument of Appen-
ix A explains how such a magnetic dipole contributes to
he first multipole term of the vector potential, yielding
D radiation one fourth the intensity of ED emission and

ranscending the traditional limitations on magnetic ef-
ects described in Section 1. In the experimental portion
f this paper, we show that intense magnetic effects are
ndeed observable at optical frequencies, bearing out
hese expectations.

. ELECTRIC AND MAGNETIC
USCEPTIBILITIES
e now solve for the gyrotropic response of an anisotropic

ystem subjected to a transverse electromagnetic plane
ave. The fields Ē�t� and B̄�t�, as well as the charge dis-
lacement from equilibrium r̄��t�, are assumed to vary
armonically in time. The wave is assumed to propagate
long the z axis so that Cartesian components of the fields
nd displacement are given by
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Ē = 1
2 �E0xx̂ + E0yŷ�e−i�t + c.c.,

B̄ = 1
2 �B0xx̂ + B0yŷ�e−i�t + c.c.,

r̄� = �x0
�0�x̂ + y0

�0�ŷ + z0
�0�ẑ� + 1

2 �x0
�1�x̂ + y0

�1�ŷ + z0
�1�ẑ�e−i�t + c . c .

+ 1
2 �x0

�2�x̂ + y0
�2�ŷ + z0

�2�ẑ�e−2i�t + c.c.,

espectively. The equation of motion can then be written
s

mer̈̄� + me�ṙ̄� + Kr̄� = − eĒ − er̄̇ � B̄, �3.1�

here −me�ṙ̄� provides viscous damping and −Kr̄� is the
estoring force. We shall assume that both the damping
onstant � and the spring constant K may be different in
ifferent directions.
By identifying the electric polarization P̄�t�=−Ner̄��t�,

nd its frequency components according to P̄�t�=P�0�

1
2 �P�1�e−i�t+P�1�*ei�t�+ 1

2 �P�2�e−i2�t+P�2�*ei2�t�, coupled
quations for all the terms of P can be obtained directly
rom Eq. (3.1). The starting equations for Cartesian com-
onents of P̄�t� are

meP̈x + me�xṖx + KxPx = Ne2E0x − e�ṖyB0z − ṖzB0y�,

�3.2�

meP̈y + me�yṖy + KyPy = Ne2E0y − e�ṖzB0x − ṖxB0z�,

�3.3�

meP̈z + me�zṖz + KzPz = − e�ṖxB0y − ṖyB0x�. �3.4�

ystem susceptibilities that account for magnetization ef-
ects may be calculated by solving Eqs. (3.2)–(3.4) for the
omponents of Px , Py, and Pz at frequencies appearing in
he expansion of r̄��t� given above, namely 0, �, and 2�.
pecifically, � is evaluated according to the relations

���0��ij = Pi
�0�/0E0j, �3.5�

������ij = Pi
�1�/0E0j, �3.6�

���2���ij = Pi
�2�/0E0j, �3.7�

here i, j, and k are Cartesian coordinates x, y, or z.
hen defined in this way, the susceptibilities are all di-
ensionless, and have the merit of showing the nonlinear
agnetic contributions explicitly. However different or-

ers of the nonlinear interactions appear together in the
usceptibility at each frequency.

If we retain only the leading terms in the susceptibili-
ies (written in Cartesian coordinates), that is only those
erms depending on one or two input magnetic field am-
litudes, the results for nonzero contributions to the sus-
eptibility � are as follows.

Zero frequency (0):

���0;�,− ���12 =
Ne2

0
� ie�B0z

*

4Kx�yFyGy

+ c.c.� , �3.8�
���0;�,− ���21 =
Ne2

0
�− ie�B0z

*

4Ky�xFx

+ c.c.� , �3.9�

���0;�,− ���13 =
Ne2

0
� − ie�B0y

*

4Kx�zFzGz

+ c.c.� , �3.10�

���0;�,− ���31 =
Ne2

0
� ie�B0y

*

4Kz�xFx

+ c.c.� , �3.11�

���0;�,− ���23 =
Ne2

0
� ie�B0x

*

4Ky�zFzGz

+ c.c.� , �3.12�

���0;�,− ���32 =
Ne2

0
� − ie�B0x

*

4Kz�yFyGy

+ c.c.� . �3.13�

Fundamental frequency ���:

����;���11 =
Ne2

0
� 1

�xFx
� , �3.14�

����;�,− �,���12 =
Ne2

0
� − e2�2B0xB0y

*

2�x�y�z�FxFyGy
� , �3.15�

����;�,− �,���21 =
Ne2

0
� − e2�2B0x

* B0y

2�x�y�z�FxFyGy
� , �3.16�

����;���22 =
Ne2

0
� 1

�yFyGy
� , �3.17�

����;�,− �,���23 =
Ne2

0
� − e2�2B0yB0z

*

2�x��y�zFyFzGyGz
� ,

�3.18�

����;�,− �,���32 =
Ne2

0
� − e2�2B0y

* B0z

2�x��y�zFyFzGyGz
� ,

�3.19�

����;���33 =
Ne2

0
� 1

�zFzGz
� , �3.20�

����;�,− �,���31 =
Ne2

0
� − e2�2B0x

* B0z

2�x�y��zFxFzGz
� , �3.21�

����;�,�,− ���13 =
Ne2

0
� − e2�2B0xB0z

*

2�x�y��zFxFzGz
� . �3.22�

Second-harmonic frequency �−2��:

���2�;�,���12 =
Ne2

0
� ie�B0z

2�x��yFyGy
� , �3.23�
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���2�;�,���21 =
Ne2

0
�− ie�B0z

2�x�y�Fx
� , �3.24�

���2�;�,���13 =
Ne2

0
� − ie�B0y

2�x��zFzGz
� , �3.25�

���2�;�,���31 =
Ne2

0
� ie�B0y

2�x�z�Fx
� , �3.26�

���2�;�,���32 =
Ne2

0
� − ie�B0x

2�y�z�FyGy
� , �3.27�

���2�;�,���23 =
Ne2

0
� ie�B0x

2�y��zFzGz
� . �3.28�

n the expressions above, the resonant denominators are
efined in terms of Cartesian coordinates i=x ,y ,z to be

�i 	 − me�
2 − ime�i� + Ki, �3.29�

�i� 	 − 4me�
2 − 2ime�i� + Ki. �3.30�

he various F factors can be written using cyclic permu-
ation of the indices as

Fi 	 1 −
e2�2

2�i
� B0k2

�j�
+

B0j2

�k�
� , �3.31�

nd, finally, we also have

Gy 	 1 −
�e2�2B0xB0y�2

2�x�y��z��
2FxFy

, �3.32�

Gz 	 1 −
�e2�2B0xB0z�2

4�x��y��
2�zFxFz

. �3.33�

e note that in all the susceptibilities above �ij=�ji
* only

hen the field amplitudes are real and the optical fre-
uency is far from any resonance.
In the unperturbed principal axis system, the suscepti-

ility tensor has diagonal components �11���, �22���, and
33���, given by Eqs. (3.14), (3.17), and (3.20). Upon exci-
ation with intense light off-diagonal terms are contrib-
ted in various orders as specified by Eqs. (3.8)–(3.28). In
he present calculation, all such terms are magnetic in
rigin since quadratic and higher-order electric field
erms have specifically been excluded. Note that the
ixed character susceptibilities ��0� , ����, and ��2�� can

enerate either electric or magnetic dipoles. ED fields ap-
ear at frequencies 0, �, and 2� as indicated by the argu-
ent of �. However, because the magnetic dipole moment

scillates at ±� in the rotating frame of E (see Section 2),
he MD fields appear at � in the lab frame. Considering
esponse at frequency � only, and specializing again to
he case of a real x-polarized wave propagating along z,
he susceptibility tensor far from any resonances can be
aken to have the form
� = �
�11 0 − i�13

0 �22 0

i�31 0 �33
� . �3.34�

hen the medium is lossless, the quantities �13�2�� and
�31�2�� are real and equal. These off-diagonal terms
orm polarizations such as Pz

�2��2��= i0 �31
�2��2�� Ex���

hat account for z-polarized magnetic emission at the fun-
amental frequency �. By determining the eigenvalues of
he tensor � in the presence of light the components of �
n the diagonalized (primed) reference frame are found to
e �11� =�11− �13, �22� =�22, and �33� =�11+ �13. Noting that

11� ��22� ��33� even if the material is initially isotropic
�11=�22=�33�, we conclude that optical magnetization
enerates linear birefringence in the medium. Similarly,
or probe waves that are not collinear with the incident
eld, it generates circular birefringence.
Self-induced magneto-optic birefringence is weak un-

ess the cyclotron frequency approaches the optical fre-
uency or large resonant enhancement is present. How-
ver if these conditions are met, wave energy will
ropagate in a direction that is slightly different from ẑ in
he laboratory frame, as one can easily show. By solving
he wave equation k̄� �k̄� Ē�+ ��2 /c2�Ē=−��2 /c2��JĒ, re-
ractive indices for x̂- and ŷ-polarized light are found to be

x=�1+�11− ��132 / �1+�11�� and ny=�1+�22, respectively,
nd an axial electric field component develops with a rela-
ive amplitude given by

Ez = � − �31

1 + �11
�Ex. �3.35�

ence there is a small angle between the Poynting
ector and the optical wave vector k̄ given by
=tan−1��13  / �1+�11��. This angular deviation of the
oynting vector results in a “walk-off” effect that is simi-

ar to that encountered in naturally birefringent crystals.
ere, though, it results from magnetic anisotropy. The di-

ection of S̄ differs from k̂ because B̄ is not parallel to H̄.
The off-diagonal susceptibilities derived above are non-

inear in their dependences on optical field amplitudes,
ven though quadratic or higher-order dependences in E
ere omitted from the theoretical model. Because the
efinitions Eqs. (3.5)–(3.7) remove the linear electric field
ependence from the calculated susceptibilities, any re-
idual field dependence is fundamentally magnetic in ori-
in. Although it is common practice to decompose suscep-
ibilities using a power series to separate first-, second-,
nd higher-order dependences on Ē, Eqs. (3.8)–(3.28)
ave the merit of revealing novel effects such as the self-

nduced birefringence and beam walk-off effects described
bove that are the direct result of optical magnetization.
With these results in hand, an expression for the mag-

itude of the off-resonant optical magnetization M̄ itself
an be obtained. For a dielectric medium (with conduction
urrent density J̄c=0), the relationship between M̄
nd J̄M is expressible in terms of components parallel
nd perpendicular to the electric field: ��̄�M̄� 
�
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�J̄M��  = �J̄M��  = ��̄�M̄��. As determined earlier, the
agnetic current is also related to the motion of real

harges by

�J̄M�� = − R�J̄E�� = − R� ��P̄��

�t
� .

ence it is apparent that the magnitudes of magnetiza-
ion and electric polarization are related by

��̄ � M̄�� = ��̄ � M̄�� = − R� ��P̄��

�t
� .

y evaluating the indicated derivatives for an x-polarized
lane wave propagating in the z direction and using the
ispersion relation of light together with the constitutive
elation B̄=�H̄=�0�H̄+M̄�, the optical magnetization per
nit volume parallel to B̄=B�t�ŷ is found to be

M̄�t� = − cRP�t�ŷ. �3.36�

t high intensities, nonlinear restoring forces in real
tomic systems eventually cause nonlinear optical effects
o appear that are proportional to powers of the electric
eld (E2, E3, etc.). Since the nonlinear magnetization in
q. (3.36) scales in proportion to polarization at elevated

ntensities, one can surmise that intense, purely magnetic
onlinear effects may be observable at moderate intensi-
ies too. This is borne out by experimental results on mag-
etic continuum generation shown in Section 4. There,
bservations are presented of intense magnetic white-
ight generation in two dielectric media and the magnetic
mission is found to resemble the corresponding, highly
onlinear electric process closely.
An additional consequence of intense magnetic re-

ponse at optical frequencies is that Poynting’s theorem
ust be modified to include magnetic energy storage in

he medium. Customarily [10] the rate of energy loss at
n arbitrary point in space is equated to the negative di-
ergence of the Poynting vector S. Including dynamic
agnetization, this yields

− �̄ · S̄ = Ē · J̄ +
1

2

�

�t
��0H̄ · H̄ + 0Ē · Ē�

+ �H̄ ·
�

�t
�0M̄ + Ē ·

�

�t
P̄� . �3.37�

he energy loss rate is determined by three terms on the
ight-hand side of Eq. (3.37). The first two are irreversible
ohmic) losses and changes in the energy stored in the
ree space electric and magnetic fields, respectively. The
hird and fourth terms describe changes in energy stored
n the motion of charges. When the magnetization is no
onger negligible ��M̄ /�t=0� its effect on energy balance

ust be taken into account.

. EXPERIMENTS AND RESULTS
s a preamble to the description of experimental proce-
ures, we note how ED and MD scattered radiation are
istinguishable on a purely experimental basis. In Fig. 4,
e illustrate how rotation of a signal polarizer can be
sed to separate linearly polarized ED and MD signals.
hen the incident polarization is vertical [Fig. 4(a)], the

adiant MD magnetic field points in the direction of ob-
ervation, producing a null intensity for MD radiation
easured in this direction. When the incident polariza-

ion is horizontal [Fig. 4(b)], the radiant MD magnetic
eld is vertical, producing a maximum intensity in the di-
ection of observation, consistent with Poynting’s vector.
or these same two polarizations the radiant ED fields
roduce a maximum and a null. Hence the incident polar-
zations that produce maximum ED and MD scattered in-
ensities are orthogonal and the corresponding fields may
e readily separated using vertical and horizontal analyz-
rs in a standard 90° scattering geometry.

Experiments were performed with three sources: A
hirped pulse amplified laser system, a cw mode-locked
i:sapphire oscillator and an Ar gas laser. The highest
eak powers were obtained from a frequency-doubled Er-

glass fiber laser that was regeneratively amplified in Ti-
sapphire at a repetition rate of 1 kHz (Clark MXR CPA-
001). This yielded average output powers as high as
00 mW in pulse trains of �150 fs pulses at a fixed wave-
ength of 775 nm. To measure radiation patterns, low av-
rage powers in the neighborhood of 3.5 mW were focused
ith a 30 cm lens to avoid optical component damage and

o limit peak intensities at the sample to I	1013 W/cm2.
ower dependence was measured with collimated beams

ig. 4. Relative orientations of incident and scattered dipole
lectromagnetic fields for (a) vertical incident polarization (which
ields a maximum intensity for ED radiation detected through a
ertical analyzer and an MD null), and (b) horizontal incident po-
arization (which yields a maximum intensity for MD radiation
etected through a horizontal analyzer and an ED null).
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f diameter 	3 mm over the lowest intensity range that
ave observable signals, to eliminate the possibility of po-
arization rotation of signals crossing the interaction re-
ion toward the detector. A cw mode-locked Ti:sapphire
scillator provided output pulses of �100 fs duration cen-
ered at 810 nm, and operated at a repetition rate of
0 MHz. By using a 2 cm focusing lens, peak intensities at
he sample of up to 1010 W/cm2 were obtainable with this
ource. Finally, output in the 1–10 W range was available
rom a cw Ar laser operating at 514 nm. Peak intensity
chieved in this case using a 20 cm focusing lens never
xceeded 105 W/cm2.

Light from these sources was directed through a double
resnel rhomb or a half-wave-plate into liquid samples of
Cl4, H2O, and C6H6. The intensity of light scattered at
ight angles, polarized either transverse (ED) or parallel
MD) to the incident wave vector, was measured through
calcite linear polarizer and 10 nm bandpass interference
lter. In the case of the high power experiments, many
avelengths from the ultraviolet to the infrared region
ere selectable for signal detection, because of the broad

pectral redistribution of light that accompanied white-
ight generation. The mode-locked oscillator could not
each this threshold, however, even with tight focusing, so
o such spectral reshaping took place in the samples. In
his instance only Rayleigh scattering at the incident
avelength was generated and detected at 810 nm. Detec-

ion wavelength in experiments with linearly polarized Ar
aser radiation was 514 nm.

Radiation patterns of light with ED or MD polarization
ere determined by recording intensity versus rotation
ngle of the input polarization [13]. Since only isotropic
amples were studied, this accurately mapped out the
patial distribution of scattered intensity at each signal
olarization. To establish the multipole character of the
mission reliably on a purely experimental basis, mea-
urements of this type were always performed with inten-
ities at the sample of I	1011 W/cm2 to avoid unwanted
aser-induced polarization distortions in beam control
ptics or samples.

In experiments with amplified pulses time-averaged
ignals were recorded with a Hamamatsu 636-10 photo-
ultiplier and standard photon counting techniques. Lin-

arly polarized beams of average input power �3 mW
ere softly focused into liquid samples of CCl4, C6H6, and
2O prefiltered through 0.2 �m meshes. Detector sensi-

ivity was found to vary by approximately 40% between
rthogonal signal polarizations, so signal corrections were
ecessary. A precision right-angle prism was used during
lignment to define the 90° scattering angle within
arc min. Two optical stops of diameter 3 mm separated
y 10 cm were placed between sample and detector to
imit both the wave vector bandwidth and to maintain the
elative contribution of out-of-plane electric dipole signal
ntensities below 10−4. A CaCO3 analyzer with 10−4 rejec-
ion ratio was selected and carefully positioned after the
pertures to eliminate motion of the signal beam on the
hotocathode at different orientations of the analyzer.
epresentative results from these experiments are shown

n the polar plots of Figs. 5(a) and 5(b).
Experiments with the mode-locked oscillator, at greatly

educed peak intensities, utilized mechanical chopping of
he input beam and synchronous detection with a
olarization-insensitive EG&G FND-100 photodiode. Up
o 400 mW of average power was focused at 50% duty
ycle into the sample region with a 2.0 cm lens providing
xcellent signal levels through apertures reduced to
mm, which kept spurious signal levels below 10−5. Ra-
iation patterns obtained in this way at the central laser
avelength 810 nm for all three liquid samples are shown

n Fig. 6. The solid curves are fits to dipolar cos2 � and
in2 � angular dependences. Identical experiments using
pproximately 1 W of output from an Ar laser light fo-
used into CCl4 produced no measurable signal with axial
olarization at all and will not be discussed further.
Peak intensities in the oscillator experiments were lim-

ted to I�2�1010 W/cm2, 1000 times below white-light
nd bubble formation thresholds in H2O [14]. However
he focal spot position was still slightly intensity-
ependent due to incipient self-focusing, necessitating the
se of an unfocused beam from the amplified source for
eliable determinations of the intensity dependence of
agnetic scattering (Fig. 7). These relative MD–ED mea-

urements, at power levels intermediate between those of

ig. 5. Polar plots of experimental radiation patterns of mag-
etic (solid circles) and electric (open circles) scattering intensi-
ies obtained using amplified pulses above white-light threshold
n (a) CCl4 and (b) H2O.

ig. 6. Radiation patterns of MD (solid circles) and ED (open
ircles) scattering intensities obtained using unamplified pulses
elow white-light threshold: (a) CCl4, (b) magnified view of the
agnetic component in CCl , (c) H O, and (d) C H .
4 2 6 6
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he Ar laser and white-light experiments, showed a tran-
ition from negligible magnetic scattering at low input
ower to intense signal levels at higher intensities.

. DISCUSSION
adiation patterns measured above white-light threshold
evealed two-lobed patterns of scattered light intensity
easured with the analyzer parallel (closed circles) or

erpendicular to the optical wave vector (open circles) of
he laser beam. The open circles in Fig. 5 correspond to
amiliar ED scattering. The closed circles correspond to
agnetic emission, polarized orthogonal to the ED pat-

ern. In Figs. 5(a) and 5(b) the scattered intensity ratios
re SM /SE=0.22±0.05 and SM /SE=0.38±0.10, respec-
ively. These results therefore agree quantitatively with
he maximum ratio for MD scattering SM /SE=0.25 deter-
ined in Eq. (2.21), within experimental error. However,

he effects of intensity fluctuations from the laser and the
hite-light generation process are evident in the data,
nd other measurements (discussed below) provided
uch clearer determinations of the multipole character of

he magnetic radiation and its generation mechanism.
lso, ionization is thought to accompany white-light gen-
ration [15]. Hence any interpretation of the experimen-
al results in Figs. 5(a) and 5(b) as arising purely from
ound electron dynamics is compromised. The remainder
f this discussion therefore focuses on results from experi-
ents in un-ionized dielectric samples.
Saturated magnetic scattering was observed at the fun-

amental wavelength of a Ti:Al2O3 oscillator at intensi-
ies as low as 1010 W/cm2 [Figs. 6(a)–6(d)], a result that is
n quantitative accord with Eq. (2.10) assuming paramet-
ic resonance and a linewidth of �2=2�c�3.2
1011 rad/s or less. Because of the absence of any depo-

arized background scattering in CCl4 and reduced ampli-
ude fluctuations when a mode-locked oscillator was used,
he measurements of Fig. 6(b) plainly showed that the ra-
iation is purely magnetic dipole in character. This is
ompelling evidence of intense MD response from bound
lectrons in dielectric atomic systems at intensities of
1010 W/cm2 [13]. The ratios of MD–ED scattering inten-

ig. 7. Experimental intensity of magnetic dipole scattering
ersus input intensity in CCl4. The solid (dashed) curve is a lin-
ar (quadratic) regression through the data.
ity in Figs. 6(a), 6(c), and 6(d) are 0.27±0.04, 0.23±0.04,
nd 0.28±0.04, respectively; again in agreement with
q. 2.26 within experimental error. On the other hand,

he absence of magnetic response in experiments per-
ormed with the cw Ar laser indicated that no observable

D emission takes place at low intensities. Hence a tran-
ition between these two regimes must exist, as confirmed
y the results of Fig. 7. The MD signals in Fig. 7 show a
uadratic dependence on incident intensity and an accu-
ately linear ratio of MD–ED signals, providing good
greement with the predicted power dependence and non-
inear mechanism of MD generation in Eq. (2.10) below
aturation.

. CONCLUSIONS AND SUMMARY
he main results of this paper are the observation and ex-
lanation of intense magnetic radiation induced by the
assage of light through dielectric media: Magnetic con-
inuum generation over a broad range of wavelengths and
agnetic scattering at the fundamental wavelength. Ex-

erimentally, we have demonstrated that observed mag-
etic scattering is purely dipolar, is nonlinear in origin,
nd is comparable to ED scattering only at elevated (but
onrelativistic) intensities in bound electron systems by
irtue of resonant enhancement. All the results of this pa-
er (experimental and theoretical) are consistent with the
ipole approximation �a /��1�, in contradistinction to
16]. Our model explains the unprecedented intensity of

D emission as the result of parametrically enhanced
agnetic forces acting on bound electrons, exceeding the

tandard limit of magnetic response expressed by
q. (1.2) through a nonlinear mechanism whereby moder-
tely intense optical fields induce large magnetic dis-
lacement currents. Many more magneto-optic effects
nalogous to known electro-optic effects may therefore be
bservable at lower intensities than previously thought.

Two such effects predicted in this paper are self-
nduced linear birefringence and optically induced
araday rotation. In the first, pump light produces field-
ependent changes of the susceptibility elements ��11�
�22� ��33� � that affect pump propagation. In the second,

he polarization of an orthogonal probe librates about the
ropagation axis at the optical frequency (Section 3). A
hird effect, predicted by Eqs. (3.8)–(3.13), is magneto-
lectric charge separation and static voltage generation
cross dielectric samples in the direction of propagation of
ight. Finally, there is the possibility of attaining negative
efractive indices in homogeneous dielectric media by ex-
loiting dynamic magnetic response. As shown in Section
, electric and magnetic response in bound electron sys-
ems share a common resonance condition. Consequently,
or a sufficiently sharp dispersion feature, negative per-
eability should be attainable at small blue detunings

rom the common resonance provided that point symme-
ry of the meeting is such that rotations about y trans-
orm in the same way as displacements along x. Negative
efractive index behavior may be realizable in homoge-
eous dielectric media, since both  and � could be nega-
ive over the same range of frequencies simultaneously.
ow-loss approaches to subwavelength imaging [17],
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agnetic mirrors [18], nanolithography and electromag-
etic cloaking [19] may become practical.

PPENDIX A
ere we show explicitly that an arbitrary current source

� includes a radiant magnetic dipole in the first term of
he multipole expansion of the vector potential Ā�. After
ecomposing the current into components parallel and
erpendicular to the optical electric field, the latter is
hown to be the Cartesian projection of the curl of a dipo-
ar magnetization from the solenoidal part of J̄�. If a (non-
inear) mechanism exists to generate a large magnetic
ource current of this type, magnetic dipole radiation that
s not limited to a small fraction of the electric dipole ra-
iation is generated.
In the presence of magnetic forces, there is no reason to

ssume that the vector potential is parallel to any par-
icular incident field direction. Hence we write Eq. (1.1) as
he sum of source terms parallel and perpendicular to the
ncident optical field Ē.

4�R

�0
Ā��r̄� =�

V

J̄�,��r̄��dV +�
V

J̄�,��r̄��dV + ¯ .

�A1�

For the remainder of this development, the subscript in-
icating Fourier component � is dropped.) The first term
n the right of Eq. (A1) contains the usual electric dipole
erm generated by the electric field. The second term is
ypically assumed to be negligible in isotropic media at
onrelativistic intensities because the electric field only
ccelerates charges in the direction of Ē itself. However, if
n open loop current component J̄� with the property
· J̄�=0 is generated by the optical B̄ field by any
eans—for example, by parametric resonance between

he motions driven by Ē and B̄ in a bound electron
ystem—the calculation below shows that magnetic di-
ole radiation contributes to Ā in first order.
The usual expression for the magnetic dipole moment

¯ in a source volume V is

m̄ = 1
2�

V

�r̄ � J̄�dV. �A2�

ere J̄ is implicitly azimuthal with respect to B̄ (i.e., J̄
J̄M=JM��̂ for propagation along ẑ). Unless J̄ is azi-
uthal, according to Eq. (A2), it cannot contribute to the
agnetic moment. The differential element of m̄ is then

elated to the magnetization per unit volume M̄ by dm̄
M̄dV. Consequently M̄= 1

2 �r̄� J̄M�, and

�̄ � M̄ = �̄ � � 1
2 �r̄ � J̄M�� . �A3�

artesian components of the volume integral of Eq. (A3)
re
��
V

��̄ � M̄�dV�
i

= 1
2�

V

ijk

�

�xj
klmxl�2JM��mdV,

�A4�

here the indices i, j, k, and m may be x ,y, or z. The
evi–Civita symbol ijk is nonzero for unrepeated indices,
as the value +1 if the indices form a cyclic permutation
f xyz, and is −1 if the indices are anticyclic. The factor of
in the integrand accounts for the projection of the oscil-

atory circular current J̄M onto Cartesian axes [see Eq.
2.8)]. Equation (A4) simplifies to

��
V

��̄ � M̄�dV�
i

= ijklmk�
V

�

�xj
xl�JM��mdV, �A5�

nd can be re-expressed in terms of Kronecker delta sym-
ols using the identity ijklmk=�il�jm−�im�jl to obtain [20]

��
V

��̄ � M̄�dV�
i

= ��il�jm − �im�jl��
V

�

�xj
xl�JM��mdV,

=�
V
� �

�xj
xl�JM��j −

�

�xj
xj�JM��i�dV.

�A6�

sing the product rule to expand the derivatives in Eq.
A6), together with the identity
x̄ · �̄��JM��i= �̄ · �x̄�JM��i�− �JM��i��̄ · x̄�= �̄ · �x̄�JM��i�−3�JM��i
q. (A6) becomes

��
V

��̄ � M̄�dV�
i

=�
V

���̄ · J̄M�xi + �JM��i

− �̄ · �x̄�JM��i��dV. �A7�

ecause there are no magnetic charges, magnetic cur-
ents are divergence-free ��̄ · J̄M=0�. Consequently the
rst term on the right of Eq. (A7) vanishes, yielding

��
V

��̄ � M̄�dV�
i

=�
V

��JM��i − �̄ · �x̄�JM��i��dV.

�A8�

n a homogeneous medium where the charge response is
niform throughout space, the current amplitude JM� is
lso a constant that can be removed from the second in-
egral on the right. Using the divergence theorem to re-
rite this last term as an integral over the surface S that
ncloses source volume V, we find that

�
V

�x̄�JM��i�dV = �JM��i�
S

x̄ds = 0, �A9�

ince x̄ is positive as much as it is negative over the sur-
ace S. Hence

��
V

��̄ � M̄�dV�
i

=�
V

�JM��idV. �A10�
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Thus circular current components with the property
· J̄=0 can produce magnetization (and magnetic dipole

adiation) via the first term in the multipole expansion.
quation (A10) is valid regardless of the magnitude of
P̄ /�t, and applies to insulators or conductors alike (see
elow). Consequently, dynamic magnetic moments can be
uch larger than previously thought at optical frequen-

ies. In Eq. (3.36) the magnetization was shown to be pro-
ortional to the electric polarization in insulators, and
as not limited in magnitude to a small fraction of the or-
er of �1/137�2 times the electric dipole moment. This ap-
lies not only to dielectrics but also to weakly conductive
edia, where �̄�M̄ may be comparable to �P̄ /�t while

till consistently representing the curl of a magnetic
ipole moment per unit volume, as we now show.
If the total current �J̄TOT� is simply decomposed into an

lectrical (nonsolenoidal) part governed by the usual
harge continuity equation and a magnetic (solenoidal)
art with zero divergence then, provided �m�1 as in the
pproximation of Section 2, one finds from an integration
f Ampère’s law [6] that

0 = J̄sol + J̄nonsol + �̄ � M̄ + �P̄/�t, �A11�

here J̄TOT= J̄sol+ J̄nonsol. Equation (A11) may be decom-
osed into two distinct parts:

J̄sol + �̄ � M̄ = 0,

here

�̄ · J̄sol = 0, �A12�

nd

J̄nonsol + �P̄/�t = 0,

here

�̄ · J̄nonsol � 0. �A13�

his decomposition in terms of physically distinguishable
ortions of the total current eliminates any restriction on
�M̄ due to polarization [7], since P̄ does not appear in
q. (A12). Thus, there is no inherent restriction on M̄ at
igh frequencies other than that imposed by the simple
act that of all the charges within a volume that can be set
n motion by the time-varying electric component of an
lectromagnetic wave, at most half can be deflected
round the origin to form a positive magnetic current by
he magnetic component [13].
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