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WKB calculations have revealed that tunneling dynamics of localized wave packets in simple potential
wells depend sensitively on the degree of squeezing of the wave function. Squeezed states are shown to
tunnel more slowly in general than eigenstates of the well and states which are initially localized near the
bottom of a well have much lower tunneling rates than states localized at the sides of the well. The
dependence of tunneling time on energy also exhibits steps related to quasi-bound-state energies in a
complex way. Additionally, modulations in the tunneling probability correlate with the motion of the
squeezed wave packet in the well. These results have implications both for the dynamics of squeezed ra-
diation fields and squeezed matter states, and examples of applications to controlled vibrational-state
chemistry, ultralow-noise measurements of weak signals with Josephson junctions, and optical crystals

are discussed.

PACS number(s): 03.65.Ge, 32.80.Pj, 42.50.Dv
I. INTRODUCTION

Theoretical work on the class of minimum-uncertainty
states known as squeezed states was initiated as early as
the 1920s [1], and revived in the context of quantum op-
tics in the 1960s [2]. However, it as not until 1995 that
experimental methods were developed to generate, propa-
gate, and detect squeezed states of the radiation field [3].
This caused an immense increase of interest in the field.
To date, schemes used to generate squeezed light have in-
cluded four-wave mixing in atomic vapor, four-wave mix-
ing in fibers, second-order parametric interactions in non-
linear crystals, and pump-noise-suppressed lasers [4—6].
It has been shown that squeezed states are important for
sub-shot-noise-limited interferometry and spectroscopy
with sensitivity below the shot-noise limit, and quantum
nondemolition measurements. As a consequence of these
applications and improved understanding of the uncer-
tainty limits of quantum measurement, interest has
grown recently in the possibility of creating squeezed
states of matter which may similarly exhibit unusual and
useful properties [7].

In this work, the effect of squeezing on tunneling from
a simple potential well to a continuum of final states is in-
vestigated. The treatment is sufficiently general to apply
to squeezed states of both radiation and matter fields.
However, it is primarily motivated by an interest in
modifications of tunneling phenomena due to localization
of matter wave packets within potential wells. Several
previous studies have analyzed tunneling of squeezed
states in double well quantum oscillators [8,9], but have
not been extended to describe transport. Here we analyze
the evolution of squeezed states in a one-dimensional par-
abolic well with an infinite barrier on one side and a finite
barrier on the other, explicitly incorporating the concept
of transport. We show that squeezing of spatial coordi-
nates can have a significant effect on tunneling probabili-
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ty and introduces structure in the dependence of tunnel-
ing time on energy of the wave packet which is related to
the occurrence of quasibound states. Some of the impli-
cations of the sensitivity of tunneling probability to
squeezing in the context of controlled vibrational-state
chemistry, macroscopic quantum tunneling, and in opti-
cal crystals are discussed.

Calculations presented in the next section use a WKB
procedure to obtain wave functions and the tunneling
propagator for a parabolic well coupled to a continuum
region of constant potential energy. Analytic expressions
are obtained for wave functions and tunneling probabili-
ties when the system is initially prepared in a squeezed
state. Subsequently we examine the case of a cubic bar-
rier, explain the relationship between localization, quasi-
bound states, and tunneling probability, and discuss
several applications.

II. TUNNELING BY A SQUEEZED STATE

A. Wave functions

The tunneling region considered in this paper is depict-
ed in Fig. 1, where five distinct regions (I-V) are
identified for convenience. A particle with average ener-
gy E is assumed to be initially localized in the potential
well on the left and tunnels into the classically allowed re-
gion on the right which is terminated by a boundary at
x =L. The maximum potential of the barrier is denoted
by V,. The points a, b, and c are the classical turning
points. In the classically allowed region beyond the bar-
rier, the potential falls to zero at x =w, and maintains a
constant value —¢ for x >d, where ¢ is assumed to be
positive. The potential energy in the well region (region
II of Fig. 1) is assumed to be harmonic:

V,;(x)zgma)(z)x2 . (1
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FIG. 1. Schematic of the potential well considered in this
work, coupled to continuum of states at constant potential —¢
and bounded by an infinite potential at x =L. Turning points
for energy E are at x =a, b, and c.

Here, m is the particle mass, w, is the frequency of oscil-
lation, and x is the particle position. A characteristic
length @~ ! can be defined for the linear harmonic oscilla-
tor (LHO) wave functions corresponding to this potential
well. This localization length gives the standard devia-
tion of the particle position in the LHO ground state and
is a useful quantity for discussing normalization and den-
sity of states:

a=V2mawy/# . (2)

The time evolution of a wave packet W initially local-
ized in the well is given by

Vix,0=[" G(x',x;)¥(x',0)dx" (3)

where G (x',x;t) is the propagator which accounts for
the evolution of the wave function from its initial value
W(x',0) at time zero and position x’ to its later value
W(x,t) at time ¢ and position x. The propagator
G(x',x;t) is given by
Gx',x;)=7 Pf(x" )P (x)e
k

~iE /A @

Here, the sum is over wave vectors k in the continuum
region, x > d, which are defined by

k=vV'Q2m/#)E,+¢) . (5)

The energies E; of the eigenstates 1, (x) for the potential
V(x) in Fig. 1 are a discrete set derived from the bound-
ary conditions ¢, (L)=1,(— o )=0.

To obtain a simple analytic form for the propagator,
we consider only states with energies which lie below the
barrier peak ¥V, and use a WKB approach. We neglect
those states with energies close to ¥, for which the WKB
approximation with linear turning points is not valid.
For example, the WKB approximation breaks down for
states within about #iw, of the barrier peak in a cubic po-
tential containing roughly ten quasibound states. For
moderate amounts of squeezing and energies limited to
those below V), this condition restricts the average ener-
gy of the wave packet to within two or three fiw, below
the top of the barrier.

Upon applying the appropriate connection formulas
for linear turning points [10], the WKB eigenstates ¢/ (x)
with energies 0 < E; <V, are of the form

Pr(x)= Ay Uy(x) , (6)

where A is a normalization constant. The unnormalized
WKB solutions for the potential shown in Fig. 1 are
given by

U,E(x)=‘/1§exp —f:de’], x<a (7
2 x , T
U;I(x)=—‘/7cos faqu vy ], a<x<b (8)
UM(x)= ‘/I—Q—siné’exp —fbedx']
+\/2-Q_cos§exp fbedx'], b<x<c 9)
U (x)= 9—__lsin§cos fxq dx'+ T
Vg ¢ 4
+—%cos§cos fqu dx’-% ], c<x<d.
(10)
In the continuum region we find
5 ) 172
UY(x)= —2 2.\ 2f 4 L g2 2
& (x) v 40°cos*E+ 40 sin“é
X cos |k (x —d)+1]+<p—% , x>d (11)
where the phase factor ¢ is given by
9—2
@=tan"! Ttané‘ . (12)

The wave vectors for the classically allowed and forbid-
den regions near the origin are

g(x)=aV [E,—V(x)]/fiw, x<d (13)

and

Q(x)=aV[V(x)—E, ) /fiw,, x<d (14)

respectively. In these expressions, we have made con-
venient use of a barrier parameter 6 defined by

[feax]. 1s)

The inverse of 6 is the tunneling probability for an eigen-
state with energy E,. Phases accumulated between turn-
ing points in the classically allowed region have been
designated by

e=["qax’ (16)

6=exp

and

n=qu dx’ . (17)
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For a parabolic well, £ has the particularly simple form

TW)

_ 7TEk
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An examination of Eq. (11) reveals that the probability
of the particle being found in the continuum region is
close to zero for particular values of the phase parameter
&, namely £=(n +1)m, where n is an integer. Particles
with these phases are strongly localized in the well in
quasibound states which, according to Eq. (18), occur al-
most exactly at the LHO eigenenergies and are easily
seen to have narrow energy widths on the order of
fio® 2. For energies below the bottom of the well
(—¢ <E, <0), the WKB wave functions decay exponen-
tially for x <c¢ and can be neglected in the propagator
J

f 172 : -1,2
K 460%cos2E+ — 0~ sin?
L cos’§ 2 0~ “sin“§ , &Fmin
4= oL { -1,2
4m—2+~k~ 492coszg+ze—2sin2§ ,

B. Density of states and the propagator

The determination of the density of states for evaluat-
ing the propagator requires similar considerations. Ap-
plying the boundary condition ¥, (L)=0 to Eq. (11) im-
plies k(L —d)+n+@—7/4=(n+1)7. The density of
states is then given by the derivative of this quantization
condition:

dn _ 1 dy  do .

Z= -+ T+ 2

dk w (L —d) ak  dk b
Far from resonance, only the first term is significant in
the limit of large L. However, as seen from Eq. (12), the
phase ¢ also displays strong resonant behavior near the
LHO eigenenergies. Including both of these terms for
the general case gives the density of states

dn _ L 2ka™?

==+ : (22)
dk ™ 40%os’é+ 16 %sin’¢E

N n+ 1o,

a

(
' ) — _ LHO( ../ =172, —iw
Gx'x;0= 7 3 (— D" )fmo k12 et

0n=0

Here, the remaining summation is over the N quasibound
states that lie below the barrier for which the WKB and
parabolic approximations are valid.

The denominators in the integrand of Eq. (24) can be
expanded about each resonance and are well approximat-
ed by simple poles. For £=~(n + 1), the denominators
can be written as

[Eq. (4)] for the case of wave packets initially localized in
the well.

The normalization constant A, is easily determined
from Eqgs. (6) and (11) for wave-packet energies far from
LHO eigenenergies when L is large. However, near
quasi-bound-state resonances, the probability amplitude
in the well region is very sensitive to energy if the condi-
tion

L>a 16? (19)

cannot be satisfied. For modest values of 6~ 10*, Eq. (19)
implies that L must be on the order of centimeters if the
localization of the wave packet within a well a few
angstroms in size is to be meaningful. As a consequence,
we consider off-resonant and near-resonant cases sepa-
rately (Appendix A), finding

+1)

(20)

The propagator can now be evaluated by replacing the
summation over k in Eq. (4) by an integral over the densi-
ty of states. Applying the results of Egs. (6), (20), and
(22) yields the following expression for the propagator,
valid both for on-resonance and off-resonance conditions:

—iEy 1 /%

ke UX(x"U,.(x)
G x'x:1)= - KT Tk

2m Y 46%cos’E+ 167 %sin%E

dk, x>d .

(23)

The denominator in the integrand of Eq. (23) becomes
strongly resonant at quasi-bound-state energies. Only
states 1, (x) near these energies make important contri-
butions to the integral. Moreover, since the initial wave
functions are assumed to be strongly localized in the well,
these states can be replaced by the LHO Hermite-
Gaussian wave functions with appropriate normalization
(Appendix A). With a change of variable from & to o,
the propagator becomes

oilk(x —d)tn—im/4)

20 cosE—(i /2)0 'sing

+c.c. (do ,

x'<c, x>d . (24)

1
20 cosE+(i /2)07 sing

ann

E(_l)n+l - ,
[o—(n +1)wy]xi (T, /2)

(25)

where
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Wy

" 2762 .

(26)

In this approximation, we ignore frequency shifts on the
order of w,® * and higher-order imaginary contributions
which introduce corrections to these first-order quasi-
bound-state decay rates. Note that we have also made
explicit use of the parabolic well assumption.

To complete the evaluation of Eq. (24), we expand the
phase 7 about frequency w=(n +1)w,. From Eq. (17),
we find

7I=’fln+7'n[w’(n +%)a’o] ’ (27)
where
me=a [ VT F D=V (x) /Faydx’ (28)
and
a d dx’
= |5 . (29)
! 209 fc Vn+ D=V (x")/fiw,

Here, 77, is the phase accumulated from traversing the
J

classically allowed region between the barrier and the
continuum; 7, is the respective classical transit time
across the same region.

Similarly, the wave vector k may be expanded about w,
yielding

k=k,+v,lo—(n+1awy], (30)
where
172
1, ¢
= + -+ 31
k,=a|n > 1 iy (31
and
2
a
= . 32
yn za)okn ( )

By extending the limits of integration in Eq. (24) to
infinity and making use of these results, the integral can
easily be evaluated by the method of residues. Retaining
only the term representing a wave traveling to the right,
and removing the slowly varying term k ~!/2 from the in-
tegral, the final expression for the propagator is

-2 1 ¢ A ik, (x—d)+7,]
G(x',x;t)= | = +-+-2 6, 'YLHO(x e T
(x',x;t) yyn n§0 nts ooy L Yy (x e
—itn+eg — —r oy (x—
xe TR T AT I TGy (x—d)) (33)
[
Here, O(x) is the Heaviside step function. The arbitrary _rt " V274!
exponential phase factor 7/4 in Eq. (24) has been ig- ) fd W', 0ldx 34

nored.

The propagator in Eq. (33) consists of a superposition
of exponentially decaying traveling waves which are de-
layed by corresponding classical transit times from the
edge of the barrier to the continuum region. Each of the
quasibound states decays with the usual WKB decay rate
given by Eq. (26). The sharp turn-on of each quasibound
state is related to the simple pole approximation used to
evaluate the propagator. We point out that these results
are also valid when the continuum lies above the bottom
of the well (¢ <0) if the lower limit in the summation in
Eq. (33) is replaced by the lowest LHO level which lies
above the continuum energy. True LHO bound states in
the well which lie below the continuum decay exponen-
tially in the region x > b in Fig. 1 and make negligible
contributions to the probability beyond the barrier.

C. Tunneling probability

Application of Egs. (3) and (33) to an arbitrary wave
packet composed of LHO eigenstates with probability
amplitudes ¢, reveals that, beyond the barrier, ¥(x,?) in
Eq. (33) is simply a superposition of tunneling com-
ponents weighted by their appropriate c¢,,. The probabili-
ty of escape for a wave packet initially localized in the
well is defined to be

Ignoring the rapid interference modulations between
different quasibound states, this gives a tunneling proba-
bility of

N _ —
S e, 21— " 002 —1,)

P(1)="=2

T : (35)
Cn
n§0

when normalized to the probability of the initial wave
packet lying below the barrier. This result is easily inter-
preted. The tunneling probability is simply the sum of
the individual probabilities for each of the exponentially
decaying quasibound states to tunnel through the barrier,
weighted by the probability of the wave packet to be in
that particular quasibound state. As ¢ — oo, the probabil-
ity in Eq. (35) approaches unity.

III. TUNNELING OF SQUEEZED STATES

A. Tunneling times

To investigate the significance of squeezing on tunnel-
ing times, we calculate the tunneling probability in Eq.
(35) for the case in which the initial state W(x,0) is a
squeezed state. To do this, we evaluate € and 7 for the
specific case of a cubic barrier coupled to a flat continu-
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um (Fig. 1). The barrier is assumed to have a height
V,=10%w, and we take the number of corresponding
quasibound states to be N =10. Details of the evaluation
of barrier quantities are presented in Appendix B.

We consider only pure amplitude and phase-squeezed

states. The initial squeezed wave packet can be
represented as [11]
\l,(x,o):(zﬂ_)~l/4(as)]/2e—(an/Z*B)Z . (36)

The standard deviation Ax of wave-packet position
within the parabolic well is (aS) !, where S is related to
a squeezing parameter R which is a linear measure of
squeezing and defined by the relation S=e® [11]. If
S <1, the wave packet is phase squeezed and character-
ized by a Ax greater than the ground-state standard devi-
ation. If §>1, amplitude squeezing applies, and Ax is
smaller than the ground-state standard deviation. The
initial mean displacement in 23(aS) .

The initial squeezed state may easily be represented in
terms of LHO states with probability amplitudes which
can be calculated by various methods [11,12]. Tunneling
escape times 7,, arbitrarily defined by the condition

P(r)=1—e !, (37

may then be calculated by direct application of Eq. (35).
This definition of escape time permits direct comparison
with the purely exponential decay of LHO eigenstates.
The tunneling escape times for various degrees of squeez-
ing versus average energy are plotted in Fig. 2, together
with tunneling times for eigenstates of the parabolic well.
Figure 3 reveals that the tunneling times for squeezed
states reach a minimum at S= 1.5 for an average energy
E =4.5%w,. Interestingly, this does not correspond to
the case of a pure coherent state (S =1.0). Instead, it
corresponds closely to the value of S at which energy
fluctuations reach a minimum, as indicated in Fig. 4 and
discussed below.

To understand first how squeezing affects the energy
distribution, we consider the relationship between squeez-
ing and the energy variance ((AE)?). This is given by
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FIG. 2. Tunneling escape times versus energy for cubic bar-
rier, plotted for various values of squeezing: S =0.5 (solid), 1.0
(dashed), 1.5 (dotted), and 3.0 (chain). Barrier and continuum
parameters are V= 10wy, N =10, and ¢ = 2%iw,.
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FIG. 3. Example of tunneling escape times versus squeezing
parameter for an arbitrary fixed energy E =4.5%w,.

the expression [12]
((AE)*) =L#i0*[(8B7+1)S T4+ S*—2] . (38)

The energy of a squeezed state is given by a similar ex-
pression,

(E)=1tho (482 +1)S 2+S?] . 39

The average energy in Eq. (39) depends both on the initial
mean displacement of the squeezed state 2B(aS) ' as
well as the position and momentum uncertainties, Ax and
Ap. These in turn are proportional to S~ ' and S, respec-
tively. These uncertainties contribute additional kinetic
and potential energy to the wave packet, increasing its
energy above that of a pure coherent state with displace-
ment f3.

From Eq. (39), we see that for small displacements [3
the energy is dominated by uncertainties in position and
momentum. For small energies (28S ~!~0), these uncer-
tainties contribute equally to potential energy (Ax)? and
kinetic energy (Ap)>. Thus, for small energies, the total
fluctuation in energy is minimized when potential and
kinetic energy fluctuations are simultaneously minimized,

< (AE)®> (units of wy ')

0.3 1.0 3.0
S

FIG. 4. Energy fluctuations of a squeezed state versus
squeezing parameter S. The three curves correspond to
different particle energies: E =2.0 (solid), 5.0 (dashed), and 50
(dotted).
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or S is close to one. On the other hand, for larger initial
displacements (28S ~!>0), the potential energy acquires
contributions not only from position and momentum un-
certainties, but from the mean displacement itself. Fur-
thermore, large wave-packet displacements increase the
slope of the potential energy curve, amplifying the contri-
butions of positional fluctuations Ax. Thus, at large aver-
age energies (27S ~!>>0), fluctuations of potential ener-
gy are weighted more heavily than fluctuations of kinetic
energy. In this way, energy fluctuations can be expected
to minimize for a value of S greater than one, in agree-
ment with an algebraic minimization of Eq. (38) with
respect to S which furnishes the result S, =(1+883%)!7%,

The corresponding minimization of tunneling times
occurs as a result of the LHO occupation probability dis-
tributions narrowing to a small number of LHO quasi-
bound states as S approaches S,;, (Fig. 5). Quasi-
bound-state tunneling probabilities for neighboring levels
vary by several orders of magnitude, so a wave packet
composed of a wide distribution of LHO states requires
many very long-lived quasibound states to decay before
the tunneling probability becomes appreciable. However,
for squeezed wave packets with S=S_;,, only a few
short-lived, quasibound states need to decay before the
wave packet has tunneled significantly. This also ex-
plains why LHO eigenstates have the shortest tunneling
escape times for a given energy, as seen in Fig. 2.

In addition to the sensitivity of wave-packet escape
times on squeezing, the tunneling escape times plotted in
Fig. 2 also exhibit interesting steplike features near
quasi-bound-state energies. These steps are related to the
decomposition of the initial squeezed state into a super-
position of discrete quasibound states. A squeezed state
dominated by a single quasibound state exhibits tunneling
behavior dominated by that level. If the average energy
is increased by some fraction of #iw,, then additional lev-
els must be occupied significantly to account for this ad-
ditional energy. Because of the very large differences in
tunneling rates between neighboring LHO levels,
significant changes in tunneling rates are to be expected
as higher LHO levels become significantly occupied.

0.4
0.3 - P
2 M
= !
e} #
e 024 ; [}
S vl
a LYK A
0.1 T/ veal
.' \‘0"&
! [V o
0 —2 ey
0 4 8 12 16 20
n

FIG. 5. Probability distribution |c,|?> for squeezed states
versus occupation number n, plotted for various values of
squeezing: S =0.5 (circles), 1.5 (squares), and 3.0 (triangles)
with arbitrary fixed energy E =4.5%w,. The curves are to guide
the eye.

For large amounts of phase squeezing (S =0.5, Fig. 2)
the steps in tunneling time become less prominent and do
not occur at every LHO eigenenergy. Under these condi-
tions, the broad energy distributions of phase-squeezed
states cover more than one LHO level spacing so that the
correspondence between particular quasibound states and
individual steps is lost. The tunneling time also exhibits
steplike features as a function of squeezing for fixed ener-
gies, as depicted in Fig. 3. These features similarly arise
from changes in occupation of LHO discrete levels as the
amount of squeezing is varied.

B. Coherences

Coherent effects become evident when the properties of
the tunneled wave function can be resolved on time scales
on the order of w, ! and length scales on the order of
a~!. For example, the probability |#(x,?)|?> for a pure
coherent state develops deep modulations at the wave-
packet oscillation frequency w, as shown in Fig. 6. These
modulations arise from interferences between adjacent
quasibound states.

Wave-packet squeezing can emphasize higher harmon-
ics of w, and alter the shape of tunneling modulations.
These effects are apparent in Figs. 7(a)-7(d), where
|(x,1)|* is plotted for x =d with various degrees of
squeezing at a fixed energy close to the LHO ground-state
energy. Figure 7(a) depicts a pure coherent state with
modulations at w,, consistent with the purely oscillatory
motion of the wave-packet mean {x(¢)) in the well. As
the wave packet becomes amplitude squeezed, the wave-
packet variance {[Ax (¢)]*) begins to oscillate at 2w, s0
that second harmonic modulations begin to appear in the
tunneling probability beyond the barrier [Fig. 7(b)]. Simi-
larly, phase squeezing introduces second harmonics, but
with the phase reversal evident in Fig. 7(c).

With maximum squeezing (8=0), wave packets local-
ized in the well consist of superpositions of even harmon-
ics only, with the result that breathing-type oscillations in
{[Ax (£)]*) occur purely at 2w, as shown in Fig. 7(d). At
higher energies, these coherent effects become less pro-

34
S
T
o 24
o €
=
T 1t
=
0 E— } -
0 50 100 150 200

t (units of wg ')

FIG. 6. Probability |¢(d,?)|? of particle detection at point d
beyond the barrier as a function of time for a coherent state
with §=1.0 and energy E =0.6%iw,. Barrier and continuum
parameters are V,=4%w,, N =4, and ¢ =2%w,.
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FIG. 7. Probability |(d,t)|* for various degrees of squeezing
and initial displacements f3 for particle energies exceeding the
ground-state energy E,=0.5%w, by only AE =10"%%w,: (a)
§=1.0000, B=10"% (b) S=1.0001, B=9.95X10"% (c)
$=0.9999, B=9.95X107% and (d) S =1.0010, B=0. Barrier
and continuum parameters are V', =4%iw,, N =4, and ¢ = 2%w,.

nounced as excited quasibound states become progres-
sively more populated. This occurs because 6, ? increases
exponentially with energy level n and dominates the
behavior of the tunneling probability contributions
6, %lc,|* at higher energies, reducing modulation con-
trast. Modulations become large only when the probabil-
ities |c, |* decrease rapidly enough to counterbalance the
6,? term in 6, %|c,|?. For squeezed states tunneling
through a cubic barrier, this occurs at average particle
energies approaching that of the ground state.

IV. DISCUSSION AND CONCLUSIONS

The results obtained in this paper have interesting im-
plications for quantum control [13] of chemical systems
with effective potentials of the general form shown in Fig.
1, where an energy barrier separates the initial from the
final state. For example, simple molecules such as dia-
tomic alkali metals occasionally have excited-state poten-
tials with centrifugal barriers separating shallow quasi-
bound regions from dissociative continua. The 'Il, state
of Cs, accessed at 766.7 nm, for example, has a potential
of this type [14]. In principle, for excited-state potential
wells deep enough to contain several vibrational states,
dissociative dynamics would then depend on the detailed
nature of the initial wave packet.

Our results are most relevant, however, to cases of very
deep potential wells with part or all of the well located
above the dissociative asymptote. This situation is more
typical of predissociative states of simple molecules like
IBr (electronic predissociation [15]) and HgH (vibrational
dissociation [16]). Examples among the diatomic alkali
metals include the C 'I, state of Cs, [17] and the 6 'Eg
state of Na, [18] which form adiabats through avoided
crossings with repulsive states similar to the model con-
sidered here. The influence of tunneling was specifically
considered as early as the work of Farkas and Levy [19]
on AlH. In such systems, our calculations indicate that
initial-state preparation strongly affects the evolution of
excited-state reactions. Both the amplitude and phase of
individual quasibound states encompassed in the initial
superposition state affect the rate of tunneling through
the barrier. Reaction time scale and yield should there-
fore be amenable to manipulation using incident light
pulses of durations less than a vibrational period with
tailored amplitude, bandwidth, central frequency, and
chirp to slow down or speed up chemical dynamics. In
optically initiated unimolecular reactions, ultrafast dissi-
pation of excitation to intramolecular vibrational reser-
voirs should be impeded by appropriate phase and chirp
manipulation of incident pulses. This suggests useful ex-
tensions of the experimental techniques developed recent-
ly [20] for molecular wave-packet preparation, to exploit
optical phasing in the creation of squeezed matter states
analogous to squeezed states of the radiation field [11]
with correspondingly modified, nonclassical dynamics.

The modification of tunneling dynamics by squeezing
also has interesting consequences for dc-biased Josephson
junctions and Josephson interferometers and is particu-
larly germane to precision measurements of magnetic flux
or voltage close to the shot-noise limit with these struc-
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tures [21]. Here, the relevant variable is the Cooper pair
center-of-mass phase difference & in the BCS ground-state
wave functions on either side of the Josephson barrier
[22]. The dynamics of the phase difference § arise from a
quantum-mechanical “binding energy” V(8) due to cou-
pling of Cooper pairs on either side of the barrier by the
tunneling interaction [23]. These dynamics have been
studied extensively in both the classical regime [24] and
more recently in the quantum regime at low temperatures
where quantized energy levels observed in interactions
with microwave radiation [25] and tunneling of the phase
difference 8 from potential minima in ¥V (8) have been ob-
served [26].

The tunneling dynamics of the phase difference & and
corresponding junction voltage V =(#/2e)d across a
Josephson junction with capacitance C can be described
by an effective quantum-mechanical Hamiltonian consist-
ing of a potential energy

V(8)=—E,(cosd+8I/I,) (40)

and a kinetic charging energy (2en)?/2C, where 2en is the
amount of charge transferred across the junction,
I,=2eE; /#, and E; is a constant related to the tunneling
interaction matrix elements and density of states
[23,27,28]. When the applied current I is less than I; in
Eq. (40), the potential V' (8) is locally well approximated
by a cubic potential of the form shown in Fig. 1 with
¢ >>fiw,. The preparation of squeezed states 1(8) should
then be feasible by application of a constant bias current
and a microwave current at 2w, to modulate the
resonant_ frequency of the ‘“quantum well” [25]
wo=(2V2el,C/#)VX1—1/1;)"* together with seed
currents at @, to provide additional control of mean
wave-packet displacement and phasing. This is closely
analogous to optical [5] and microwave squeezing [29] by
parametric interactions.

The results of this work indicate that large amounts of
phase squeezing (S >>1) would strongly inhibit tunneling
decay in a potential of the form given in Eq. (40), and
permit improved ultralow-noise measurements of weak
signals at low temperatures by squeezed states whose
noise properties are well known to be highly affected by
loss [30]. Furthermore, we expect these results to be im-
portant in fundamental dynamics of coupled junctions
where wave-packet localization can be expected to
enhance or inhibit tunneling in a fashion reminiscent of
numerical simulations of forced double potential wells
[31].

Optical crystals, formed by trapping laser-cooled
atoms in periodic optical potential wells, constitute
another system in which squeezing of atomic states could
significantly affect tunneling. In this case, tunneling
occurs as nonclassical motion of escaping atoms or those
moving between minima of the optical field configuration.
Recent results have demonstrated quantized motion of
atoms trapped within optical potential wells, indicated by
the presence of vibrational sidebands in resonance
fluorescence spectra or in stimulated Raman spectra [32].
Just as for quasibound states of molecules, the induced vi-
brational manifolds of such atoms should be amenable to

preparation of squeezed vibrational states [7]. The re-
sults of the present work indicate that squeezing of
trapped atoms could strongly influence their tunneling
rates into neighboring wells as well as their escape from
the trap.

In summary, we have calculated tunneling times for
squeezing states initially confined to a harmonic potential
well coupled to a continuum. The fastest tunneling rates
are observed for wave packets prepared with small
amounts of amplitude squeezing, but their rates never
exceed those of pure LHO eigenstates. On the other
hand, tunneling is inhibited by large squeezing. We have
also elucidated the relationship between the energy
dispersion of wave packets and tunneling rates, as well as
more subtle steplike behavior arising from the discrete
nature of quasibound states in the well. Oscillatory
behavior of the wave packet can give rise to modulations
in the tunneling wave-function probability which are
most visible when relative contributions to excited-state
populations decrease exponentially with increasing vibra-
tional quantum number. Finally, applications of
squeezed matter wave packets have been identified for
control of excited-state chemical reactions by appropri-
ately tailored ultrafast light pulses, modification of mac-
roscopic tunneling dynamics in Josephson junctions, and
inhibition of tunneling of trapped atoms in optical crys-
tals.
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APPENDIX A

The question of normalization of wave functions may
be handled by first matching the WKB solutions U, (x)

to the normalized LHO eigenstates in the semiclassical
limit. By explicit integration, the WKB solution in Eq.
(8) for a parabolic well yields

: ~1/4
Ui, (2)= 2a)'? |4 |n + o | =2
Xcos | ——— n+l +9 (A1)
4 2 2 ’
where z =ax. The phase ¢ is given by
o=—Zla|n+L|=2
4 2
+ |n+L {sin! |=—2— (A2)
2 2(n+1)

In the limit of large quantum numbers, this result
matches the asymptotic expansion for the parabolic
cylinder functions D,(—2z) to within a constant of pro-
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portionality [33]. For integer values of n, the parabolic
cylinder functions reduce to Hermite-Gaussian LHO
solutions. Comparing the WKB solution in Egs. (Al)
and (A2) to the normalized asymptotic LHO solutions for
integer n reveals

U,(x)=2(—D"r'"2a " 1YtHO(x), x <c (A3)
where
wI;HO(x):2*n/2(277.)~1/4a1/2e—a2x2/4Hn(ax/\/—2> )
(A4)

Here, H, (x) are Hermite polynomials of order .

We can now calculate the normalization constant A,
for the on-resonance and off-resonance cases by integrat-
ing [¥(x)|? in Eq. (6) over all space. When the resonance
condition §=m(n +1) is not met, only the wave-function
amplitude in continuum region contributes significantly
to the total wave-function probability. Integrating
|UY(x)|* over the continuum region gives the off-
resonant result in Eq. (20). However, close to quasi-
bound-state resonances, the wave-function amplitude in
the well region becomes appreciable. Replacing the
WKB wave functions in the well region [Egs. (7)-(9)]
with the LHO wave functions normalized to the WKB
solutions in Eq. (A3), we find A is approximately

Ay=

dra ' [ (YRR Pdx
—-1/2

L
+fd [UY (x")dx’ , E=mn+1). (A9

The small contributions just beyond the barrier (region
IV) have been neglected. Evaluating Eq. (AS5) explicitly
yields the result for the on-resonant case in Eq. (20).

APPENDIX B

In this appendix, we compute the barrier parameters
for the specific case of a cubic potential. The cubic po-
tential in Fig. 1 has the general form

Vi(x)=(27V,/4)x 2w —x)/w? . (B1)

At the LHO eigenenergies E =#wy(n + 1), the tunneling
parameter [Eq. (15)] is

0, =exp

o [V V) Foy=(n F3dx" |, (B

where b and ¢ are the barrier turning points. To obtain
accurate results for intermediate energies, the integral in
(B2) is evaluated exactly. This can be performed by fac-
toring the cubic polynomial in the radical of the in-
tegrand in Eq. (B2). The zeros of the polynomial are sim-
ply the three turning points a, b, and ¢. The integral can
be expressed in terms of the Gauss-hypergeometric func-
tion [34]. The resulting tunneling parameter becomes

6,=exp(l,), (B3)
where I, is
T
L= |5 |B' 5y 2=
V3=V
X, F, —i’iﬁ;__} . (B4)
2°2 Y270

The parameters y;>y, >y, are the turning points in
units of w and are roots of the cubic equation

BYXy —1)+(n+1)=0. (B5)
The constant B is given by
B =127V, /4%, . (B6)

The phase parameter 7, and the classical delay time 7,,
given by Egs. (28) and (29), are most easily evaluated by
assuming the potential in region IV of Fig. 1 is linear.
We simply state the results:

4 1 (b 372
= | F -4 T B7
"~ 3B 2w, B7
and
3/4
r =2Bwg |n+++ 2 (B8)
n 0 2 ﬁwo

[1] E. H. Kennard, Z. Phys. 44, 326 (1927).

[2] E. Takahashi, in Advances in Communications Systems,
edited by V. Balakrishnan (Academic, New York, 1965),
p. 227.

[3] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and
J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[4] R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G.
Devoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
[S]L. A. Wu, H.J. Kimble, J. L. Hall, and H. Wu, Phys. Rev.
Lett. 57, 2520 (1986).

[6] Y. Yamamoto, S. Machida, and O. Nilsson, Phys. Rev. A
34, 4025 (1986).

[71J. 1. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, Phys.
Rev. Lett. 70, 556 (1993).

[8] H. Dekker, Phys. Lett. A 119, 10 (1986).

[9] D. Mugnai, A. Ranfagni, M. Montagna, O. Pilla, and G.

Viliani, Phys. Rev. A 40, 3397 (1989).

[10] E. Merzbacher, Quantum Mechanics (Wiley, New York,
1970), p. 121.

[11] H. P. Yuen, Phys. Rev. A 13, 2226 (1976).

[12] R. W. Henry and S. C. Glotzer, Am. J. Phys. 56, 318
(1988).

[13] W. S. Warren, H. Rabitz, and M. Dahleh, Science 259,
1581 (1993).

[14] P. Kusch and M. Hessel, J. Mol. Spectrosc. 32, 181 (1969).

[15] M. B. Faist and R. B. Bernstein, J. Chem. Phys. 64, 2971
(1976).

[16] G. Herzberg, Spectra of Diatomic Molecules (Van Nos-
trand Reinhold, Toronto, 1950), p. 427.

[17] G. Rodriguez and J. G. Eden, Chem. Phys. Lett. 205, 371
(1993).

[18] C.-C. Tsai, J. T. Bahns, and W. C. Stwalley, J. Chem.



49 TUNNELING DYNAMICS OF SQUEEZED STATESIN A ... 41

Phys. (to be published); C.-C. Tsai, J. T. Bahns, T.-J.
Whang, H. Wang, and W. C. Stwalley, Phys. Rev. Lett. (to
be published).

[19] L. Farkas and S. Levy, Z. Phys. 84, 195 (1933).

[20] T. J. Dunn, J. N. Sweester, I. A. Walmsley, and C. Rad-
zewicz, Phys. Rev. Lett. 70, 3388 (1993); M. Dantus, M. J.
Rosker, and A. H. Zewall, J. Chem. Phys. 87, 2395 (1987).

[21] S. T. Pavlov and A. V. Prokhorov, Fiz. Tverd. Tela (Len-
ingrad) 33, 2460 (1991) [Sov. Phys. Solid State 33, 1384
(1991)]; 34, 97 (1992) [34, 50 (1992)].

[22] R. P. Feynman, Statistical Mechanics (Benjamin, Reading,
MA, 1972).

[23] D. J. Scalapino, in Tunneling Phenomena in Solids, edited
by E. Burnstein and S. Lundqvist (Plenum, New York,
1969), Chap. 32.

[24] D. N. Langenberg, in Tunneling Phenomena in Solids,
edited by E. Burnstein and S. Lundqvist (Plenum, New
York, 1969), Chap. 33.

[25] M. H. Devoret, J. M. Martinis, D. Esteve, and J. Clarke,
Helv. Phys. Acta 61, 622 (1988).

[26] R. F. Voss and R. A. Webb, Phys. Rev. Lett. 47, 265
(1981); D. Esteve, J. M. Martinis, C. Urbina, E. Turlot, M.
Devoret, H. Grabert, and S. Linkwitz, Phys. Scr. 129, 121

(1989).

[27] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149,
374 (1983).

[28] E. Shimshoni and E. Ben-Jacob, Phys. Rev. B 43, 2705
(1991).

[29] R. Movshovich, B. Yurke, P. G. Kaminsky, A. D. Smith,
A. H. Silver, R. W. Simon, and M. V. Schneider, Phys.
Rev. Lett. 17, 1419 (1990).

[30] L. Wu, M. Xiao, and H. J. Kimble, J. Opt. Soc. Am. B 4,
1465 (1987).

[31] W. A. Lin and L. E. Ballentine, Phys. Rev. Lett. 65, 2927
(1990).

[32] P. S. Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rol-
ston, R. J. C. Spreeuw, and C. I. Westbrook, Phys. Rev.
Lett. 69, 49 (1992); P. Verkerk, B. Lounis, C. Salomon, C.
Cohen-Tannoudji, J. Courtois, and G. Grynberg, ibid. 68,
3861 (1992); G. Grynberg, B. Lounis, P. Verkerk, J.-Y.
Courtois, and C. Salomon, ibid. 70, 2249 (1993).

[33] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1970), p.
690.

[34] 1. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,
Series, and Products (Academic, Orlando, 1980).



