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Density matrix theory is presented to explain recent experimental observations of intense optically induced
magnetism due to a “mixed” type of nonlinearity proportional to the product of the electric- and magnetic-field
strengths of light. Two previously unknown quadratic optical effects are predicted—namely, transverse optical
magnetization and magnetic charge separation—and quantitative agreement is obtained with experimental
results regarding the former of these. The mechanistic origin of a third quadratic nonlinearity, namely,
magneto-electric second-harmonic generation, which is familiar on a phenomenological basis in classical non-
linear optics, is also examined. Transverse optical magnetism is shown to enable large permeability changes at
optical frequencies accompanied by magnetic dispersion near resonances. This phenomenon provides for all-
optical generation of magnetic moments, large transverse magnetic fields, static electric dipoles, and terahertz
radiation in (unbiased) transparent homogeneous dielectrics or semiconductors. Intriguing possibilities for ap-
plications are considered, including magneto-electric refractive index modification, optical electric power gen-
eration, and spin control. © 2009 Optical Society of America
OCIS codes: 190.0190, 190.4410, 190.7110, 320.7120.
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. INTRODUCTION
hroughout the long history of nonlinear optics, an enor-
ous number of phenomena have been discovered in
hich electromagnetic waves combine to alter the proper-

ies of materials in complex ways. Nonlinear interactions
roportional to various powers of the incident electric
elds (E2, E3, etc.) have contributed greatly to the emer-
ence of entire scientific fields such as ultrafast photo-
hemistry, quantum optics, holography, quantum infor-
ation, spintronics, and laser cooling. Although nonlinear

ptics is now a mature topic, the possibility of having the
agnetic field of light work in concert with the electric

omponent to yield a nonlinear magnetic response propor-
ional to the product of electric and magnetic field
trengths has gone unnoticed. Longitudinal magneto-
ptic effects such as the Faraday and inverse Faraday ef-
ect are well documented, but transverse magneto-electric
EH� effects in which both contributing fields oscillate at
he optical frequency are unknown. In the past, the
trength of magnetic dipole interactions was invariably
hought to be limited to a small fraction of that of electric
ipole interactions. Following a recent discovery [1], how-
ver, new geometries have become available for all-optical
nteractions and magnetic device applications that pro-
ide unexpectedly direct ways of controlling spins and
reating magnetic moments in ordinary matter. An en-
irely new class of nonlinear optical interactions is emerg-
ng that holds promise for unanticipated electromagnetic
echnologies based on natural materials. This article for-
ulates the quantum theory of this class of effects

gainst the backdrop of recent observations of transverse
ptical magnetism.

Recently published experiments [1–3] and classical
nalysis [2] have revealed a quadratic mechanism
0740-3224/09/12B120-10/$15.00 © 2
hereby intense magneto-electric response can be ob-
ained in (nominally nonmagnetic) dielectric media. Mag-
etic dipole emission nearly as intense as the electric po-

arization has been reported at infrared and visible
avelengths in transparent dielectric liquids (CCl4, C6H6,
nd H2O), far from any electronic resonances. Although
he possibilities for magneto-electric material modifica-
ion with light are expected to be more dramatic on reso-
ance, where a quantum mechanical analysis is required,
o quantum treatment of this problem has appeared.
ere an analysis is made of the parametric origin of in-

ense magnetic dipole emission and magnetization in-
uced by linearly polarized optical waves in bound elec-
ron systems using the density matrix. This theory is in
uantitative accord with experiments performed to date
t nonrelativistic intensities in several insulators. Fur-
hermore, it predicts the possibility of magneto-electric
odification of the index of refraction in low-loss natural
aterials, and introduces a novel approach to generate

ntense magnetic fields that may be of use in many disci-
lines that rely on spin physics.
Since the time of Maxwell [4], it has been widely ac-

epted that the effects of the magnetic component H of
ight can be ignored compared to effects of the electric
omponent E at ordinary intensities. Though magnetic
henomena exhibit close parallels to electric behavior at
elativistic intensities, strong magnetic response is ab-
ent in the optical range under moderate irradiation con-
itions. This has been attributed in the past to the com-
arative weakness of the (optical) magnetic Lorentz force.
rguments have been made suggesting that, unlike the
lectric permittivity �, the magnetic permeability � loses
ven its physical meaning at optical frequencies [5]. Con-
equently, the many possibilities available through non-
009 Optical Society of America
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inear optics for controlling the propagation of electro-
agnetic waves by altering the permittivity ��� ,E ,H�
ith external fields were thought not to extend to the per-
eability ��� ,E ,H�. In natural materials, where � typi-

ally has the value �0 characteristic of vacuum, it ap-
eared that arbitrary control over the spatial properties
f waves that depend in principle on both � and � was im-
ossible. Until now, controlled variation of magnetic per-
eability even at relatively low frequencies in the giga-

ertz range has been realizable only in artificial materials
alled metamaterials [6]. Experimental research on
ransformation optics [7,8], which calls for controlled spa-
ial variations of � and � together with low losses at much
igher frequencies, therefore faces even greater chal-

enges. In this paper, however, a new mechanism is ana-
yzed that is capable of generating intense magnetic fields
t single points, or along surfaces or in macroscopic vol-
mes, and allows precise control of magnetic dispersion in

ow-loss, homogeneous dielectrics. The magnetic fields
nd dipole moments resulting from transverse optical
agnetism are derived in subsequent sections, and then

heir possible relevance is considered to next-generation
agnetic memories [9], spintronics [10], control of spins

n Bose–Einstein condensates [11], atom optics [12],
uantum information science [13], and electric power gen-
ration.

Research performed in transparent dielectrics (water,
Cl4, and benzene) at optical intensities as low as I
108 W/cm2, fully ten orders of magnitude below the

elativistic optics threshold of I�1018 W/cm2, has now
rovided experimental evidence of a second-order
agneto-electric optical process capable of generating in-

ense magnetic dipole emission [1–3]. The measured mag-
etic susceptibility can be as large as half the electric di-
ole susceptibility, even far from any electronic
esonances. Classical theory [2] that accounts for these
urprising effects through the leading term of the multi-
ole expansion, and predicts many new magneto-optical
henomena, agrees with these observations. However a
uantum mechanical analysis of transverse optical mag-
etism has not yet been provided.
The main purpose of this paper is, therefore, to formu-

ate a quantum mechanical theory of the intense trans-
erse magnetic dipole moments and static electric dipole
oments that form in bound electron systems as the re-

ult of irradiation with coherent light of moderate inten-
ity. A radiant magnetization that is driven simulta-
eously by the optical electric and magnetic fields is first
alculated analytically using density matrix analysis of
-level atoms or molecules. The calculation shows that di-
ectly driven magnetic resonance is possible, and by con-
idering the induced magnetic dispersion near an elec-
ronic resonance, predictions are made of intensity-
ependent, magnetic modifications of the refractive index
n dielectric media. We show that it is theoretically pos-
ible to attain negative permeability in natural materials
hat are completely homogeneous, and that moderately
ntense light can be used to program the spatial distribu-
ion of ��I ,��. We further deduce that static charge sepa-
ation takes place under the same conditions, and we
ention briefly the prospect of electric power generation

n transparent insulators.
. DENSITY MATRIX ANALYSIS
e begin by considering a system of identical 2-level at-

ms or molecules with a resonance frequency �0= ��2
�1� subjected to an electromagnetic plane wave of fre-
uency � that propagates in the positive z direction. The
ight is linearly polarized along x̂ and detuned from reso-
ance by ���0−�. Population dynamics and coherences
re found using the density matrix equation of motion:

i��̇ = �H,�� − i��̇relax. �1�

he system Hamiltonian H=Ho+V�t� is assumed to con-
ist of a static part,

Ho = ��1�1�	1� + ��2�2�	2�, �2�

hich describes the unperturbed diagonal matrix ele-
ents of the static Hamiltonian and an optical interac-

ion V of the combined dipole form

V = − �̄e · Ē − �̄m · B̄. �3�

n the semiclassical approach used here, �̇relax describes
henomenological relaxation of individual density matrix
lements in the Schrödinger picture. Uppercase rate con-
tants �ij are used to describe coherence decay between
evels i and j and lowercase constants �ii give the total
opulation decay rate of a particular level i. The irreduc-
ble representations of the (polar) electric and (axial)

agnetic components of the optical wave are

Ē�t� = −
1

2
�E+�̂− + E−�̂+�ei	 + h.c., �4�

B̄�t� = −
i

2
�B+�̂− − B−�̂+�ei	 + h.c.. �5�

n these expressions 	��t−kz is the optical phase and
he circular basis vectors �̂±=−�x̂± iŷ� /
2 are components
f the rank one spherical tensor. h.c. is an abbreviation for
ermitian conjugate. Carets are used throughout this pa-
er to denote unit basis vectors. In the case of linear po-
arization along x̂, we note the correspondences

E+ = E− = E0/
2 �6�

nd B+=B−=B0 /
2, which assume the circular compo-
ents have equal amplitudes. The irreducible electric and
agnetic dipole moments induced by the field have mag-
itudes and directions given by

�̄�e� = − ��−
�e��̂+ + �+

�e��̂−�, �7�

nd

�̄�m� = − i��+
�m��̂− − �−

�m��̂+�, �8�

espectively. When the circular components �± of these
oments are equal, the electric and magnetic moments

hemselves point along x̂ and ŷ—parallel to the inducing
elds.
Substitution of Eqs. (4)–(8) into Eq. (3) furnishes the ir-

educible form of the interaction Hamiltonian. The use of
qs. (2) and (3) in Eq. (1) then permits solution of the den-
ity matrix ��t�. The main purpose of this paper is to pre-
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ict the temporal behavior of induced electric and mag-
etic dipole moments in the medium by calculating the
xpectation values 
��e��t�� =Tr���e� ,��t�� and 
��m��t�
=Tr���m� ,��t��, respectively.

. MATRIX ELEMENTS OF TRANSVERSE
AGNETIC MOMENTS

efore proceeding to solve the equation of motion for the
ensity matrix, a discussion of the calculation of expecta-
ion values is warranted due to the transverse nature of
he magnetic dipole moment to be considered here. Indi-
idual light quanta carry spin angular momentum with
rojections on the axis of propagation given by −�, +�, or
, depending on whether their state is left-circular, right-
ircular, or linear polarization respectively. In linear
ingle-field MD interactions, the angular momentum
eeded to create or destroy a magnetic dipole moment is
herefore provided by an appropriate state of circularly
olarized incident light. However, in what follows, the in-
uced angular momentum is not along ẑ, which denotes
he propagation axis, but along the optical B field (chosen
ere to point along the transverse ŷ direction). The in-
uced transverse moment, therefore, has no projection on
he axis of propagation and can be generated without the
ransfer of any angular momentum from the optical field.
or the quadratic interaction of interest here, it will be
hown that when the angular momentum of the light field
s zero (the case of linearly polarized light), a large mag-
etic moment that oscillates at the optical frequency itself
an be induced perpendicular to ẑ. The time average value
f this orbital angular momentum is zero so that angular
omentum is conserved overall. However, this process

ives rise to intense, radiant magnetic dipole fields.
To facilitate a comparison of longitudinal and trans-

erse magnetic moments, it is convenient to consider two
oordinate systems in which the polar axis is either par-
llel or perpendicular to the wavevector k̄=kẑ. First we
iscuss longitudinal magnetic moments by considering
he coordinate system �r ,� ,	� in which the polar and
uantization axes are parallel to k̂= ẑ, and the azimuthal
ngle 	 is measured with respect to the x axis. This is the
eometry of conventional magnetic dipole transitions. The
lectric dipole transition moment on a single atom is

	�̄�e��t��12 = r̂	��e��t��12

= r̂ dV1
*�r,t�er2�r,t� + h.c.

= r̂ dVc1
*�t�1

*�r�erc2�t�2�r� + h.c.

= r̂	1���e��2��21�t� + h.c. �9�

he electric field along x̂ changes only the radial coordi-
ate r of charge position. Thus r̂= x̂, and the expectation
alue of the electric dipole is

	�̄�e�� = Tr��̄�e�,�� = x̂��12�21 + �21�12�, �10�

here �12
�e�= 	1���e��2� and �21�t�=c1

*�t�c2�t�. The trace in Eq.
10) is, in general, a sum over all states of the system.
ere however, we assume that the dynamics are domi-
ated by only two states. State 1 is the ground state and
tate 2 denotes the particular excited state that has mini-
um detuning from the incident light frequency and op-

osite parity with respect to state 1. The quantities c1 and
2 are the probability amplitudes of state 1 and state 2,
espectively.

The magnetic dipole transition moment for a one-
hoton interaction connecting states 1 and 2 is

	�̄�m��t��12 = �e/2m�  dV1
*�r,�,	,t�r̄ � p̄2�r,�,	,t� + h.c.

= �e/2m�  dVc1
*�t�1

*�r,�,	�L̄c2�t�2�r,�,	� + h.c.

�11�

n terms of the angular momentum operator L̄= r̄� p̄. In
his case, the expectation value is given by the trace of the
agnetic dipole operator �̄�m�= �e /2m�L̄ with the density
atrix:

	�̄�m�� = 	1��̄�m��2��21�t� + h.c. = Tr��̄�m�,��. �12�

At low intensities the magnetic moment in Eq. (12) is
egligible for linear polarization, because the linear mo-
entum p̄ of the electron is very nearly parallel to its dis-

lacement. The Lorentz force is negligible compared to
he force of the electric field at nonrelativistic intensities.
he cross product in the integrand of Eq. (11) and the as-
ociated angular momentum are therefore nearly zero.
nly an electric dipole oriented along x̂ is induced. In the

ase of circular polarization, the electron follows the elec-
ric field adiabatically, circulating around the propagation
xis, inducing a steady magnetic moment oriented along
he z axis �r̄� p̄�0�. This motion mediates the inverse
araday effect caused by circularly polarized light [14],
hich is not of interest in this paper. Consequently, in
ne-photon, electric-field-mediated interactions, only the
ngular momentum carried by the field E�z , t�, where z is
he quantization axis, can be transferred to the atom
nd the initial and final states |1� and |2�
ust differ in magnetic quantum number m accordingly

m2=m1±1�.
In the case of an interaction mediated jointly by the E

nd B components of a linearly polarized field, the orien-
ation of the magnetic moment is along the laboratory y
xis, and its calculation is significantly different because
wo driving forces contribute to the motion. The Lorentz
orce causes the linear momentum induced by the electric
eld E to acquire a small transverse component that is
zimuthal with respect to the B component of the optical
eld. We therefore introduce new source coordinates
r� ,�� ,	�� with a polar axis along B �ẑ�= ŷ�. As before E de-
nes the x̂�= x̂ axis. The third basis vector is ŷ�=−ẑ, and
� is considered to be measured from the ŷ� axis. In this
rimed coordinate system the linear momentum may be
ritten as p̄�= r̂�pr�+ �̂�p��+ 	̂�p	�. The expression for the
agnetic moment in Eq. (11) becomes
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	�̄�m��t��12 = �e/2m�  dV�1
*�r�,��,	�,t�r̄�

��p̄r�
+ p̄��

+ p̄	�
�2�r�,��,	�,t� + h.c.

=
− e

2m
ŷ dV�1

*�r�,��,	�,t�r̃�p	�2�r�,��,	�,t�

+ h.c., �13�

ince r̂�� p̄r�=0 and r̂�� �p	�	̂��=−p	�ŷ. Here the assump-
ions have been made that p���0 (since neither field
rives motion in the �̂� direction) and that r� is suffi-
iently slowly varying so that the amplitude of an oscilla-
ory magnetic moment can be well defined and slowly
arying too. Equation (13) is implicitly written in the ro-
ating frame where the rapid time dependence is associ-
ted with the azimuthal momentum p	� and the magnetic
oment points in the expected direction anti-parallel to

he B field (along −ŷ).
Under the action of the forces due to orthogonal fields E

nd B, the time dependence of radial �r̂�� and azimuthal
	̂�� motions may differ. Hence we assume the wavefunc-
ion is separable according to �r� ,�� ,	� , t�
�r� , t���� ,	� , t� and introduce separate c coefficients

or the radial and angular parts of the wavefunction as
ollows: �r� , t�=c�e��t��r�� and ��� ,	� , t�=c�m��t���� ,	��.
orrespondingly, we define electric and magnetic density
ub-matrices by �ij

�e�=cj
*�e�ci

�e� and �ij
�m�=cj

*�m�ci
�m� in the labo-

atory reference frame. The time development of �ij
�e� is de-

ermined by E, and that of �ij
�m� is determined by B. Both

elds oscillate at the optical frequency, so by invoking the
lowly varying envelope approximation (SVEA) the two
ubmatrices can be written in the lab frame as

��e��t� = �̃�e�ei�t �14�

nd

��m��t� = �̃�m�e±i�t, �15�

here �̃�e� and �̃�m� designate the slowly varying ampli-
udes of the electric and magnetic coherences.

In terms of these quantities, the expression for the
ransverse magnetic moment in Eq. (13) becomes

	�̄�m��t�� = − ŷ	1���m��2��21
�m��t��̃21

�e� + h.c., �16�

here we have made the replacement 	1���m��2�
	1��e /2m�r�p	��2�. According to Eq. (16), when the direc-

ion of the magnetic field is fixed along ŷ, the expectation
alue for the transverse magnetic moment is given by

	�̄�m��t�� = − ŷTr���m�,��m��t��̃�e��. �17�

he main time dependence in this expression for the mag-
etic moment is associated with �21

�m��t� in the rotating
rame. The envelope of the electric contribution desig-
ated by �̃21

�e� is assumed to vary little during an optical pe-
iod. The submatrices ��m��t� and ��e��t� are designated as
agnetic and electric, using the superscripts m and e, be-

ause the former describes temporal evolution that is azi-
uthal with respect to the axis of the optical H field,
hile the latter describes radial oscillations of the wave-
unction in the direction of E.

Note that the expectation value of the magnetic mo-
ent in Eq. (16) is second order in the wavefunction as

xpected, not fourth order. The full density matrix is just
he product of the submatrices ��m��t� and ��e��t�, given ex-
licitly by

� = ��	� = ��r,t�����,	,t��	��,	,t��	�r,t�� = ��m��t���e��t�.

�18�

he submatrices ��e��t� and ��m��t� merely describe impor-
ant degrees of freedom in the overall motion driven by
pplied fields E and B. In the next section these kinemati-
ally distinct submatrices are separately evaluated in or-
er to calculate the induced magnetization and other mo-
ents that result from combined electric and magnetic

orces.

. STEADY-STATE SOLUTION OF THE
ENSITY MATRIX

o write the total magneto-optical interaction consistent
ith any particular choice of reference frame requires

ome care. The reason for this is that interactions driven
y EB involve motional effects of two orthogonal fields,
ne of which is a polar vector �E�t�� and the other of which
B�t�� is axial. The rotating frame of linear optical inter-
ctions governed by E�t� alone, for example, has an axis
long ẑ, whereas the magnetic moment induced by the
ombined action of E�t� and B�t� involves currents circu-
ating about the ŷ axis. In this paper the joint effect of the
lectric and magnetic interactions will ultimately be de-
cribed in the lab frame of reference, but to provide per-
pective on the kinematics, use will be made of a sequence
f three reference frames. The calculation of dynamics be-
ins in the rotating frame, is next transformed to the or-
inary lab frame, and finally ends up in a z-adjusted lab
rame.

Customarily, the rotating wave approximation is intro-
uced in optical analysis to solve for system dynamics.
ne result of this is that in the frame co-rotating with a

ircular component of E�t�, the induced electric dipole is a
onstant. For this reason the electric dipole interaction is
ritten as −�̄�e� · Ē�t�, where only the field varies with

ime. However, in the same reference frame, the magnetic
oment oscillates at the optical frequency. This is implied

y Eqs. (15) and (17) where magnetic charge oscillation
aries rapidly with time as �21

�m��exp�± i�t� whereas the
lectric coherence is only slowly varying. To include elec-
ric and magnetic interactions in an atom-field Hamil-
onian referenced to a single frame, this must be taken
nto account.

The interaction Hamiltonian in the rotating frame has
he form

V�t� = −
1

2
����+

*�m� + �−
*�m�� + ��+

�e�

+ �+
�m�ei	�ei	 + ��−

�e� + �−
�m�e−i	�e−i	� + h.c. �19�

ere ��e����e�E /� and ��m����m�B /� are the electric
± � ± ± � ±
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nd magnetic interaction terms for positive or negative
�) helicity. The time dependence of the magnetic inter-
ction either adds to or subtracts from that of the electric
eld, and produces interaction terms at frequencies of 0
nd 2� as shown by Eq. (19). The electric and magnetic
ransition matrix elements of V are therefore

V12
�e� � 	1�V�e��2� = −

1

2
�	1���+

�e� + �−
*�e��ei	 + h.c.�2� �20�

nd

V12
�m� � 	1�V�m��2� = −

1

2
�	1���+

*�m� + �−
*�m�� + h.c.�2�

−
1

2
�	1���+

�m� + �−
*�m��e2i	 + h.c.�2�. �21�

The charge oscillations induced by an electric field act-
ng alone follow the time dependence of E. Hence the
lectric-field-induced coherence has the form �12

�e��t�
�̃12

�e�ei	 in the lab frame or �12
�e��t�= �̃12

�e� in the rotating
rame, as previously indicated in Eq. (14). Charge oscilla-
ions that are jointly driven by electric and magnetic
orces similarly follow the time dependence of the applied
elds, and this gives rise to three distinct frequencies of
scillation in the lab frame, namely, 0 and ±2�, because
here are combination terms in the product of the driving
elds E and B.

E�t�B�t� = �1

2
�E0x̂�ei	 + h.c.��1

2
�B0ŷ�ei	 + h.c.�

=
1

4
�E0B0e2i	 + E0

*B0
*e−2i	 + E0B0

* + E0
*B0�.

�22�

he coherence in Eq. (18) is therefore expected to take the
orm

�12�t� = �̃12
�m�*����̃12

�e���� + �̃12
�m�����̃12

�e����e2i	 = �̃12�� = 0�

+ �̃12�2��e2i	 �23�

n the lab frame. Notice that the terms on the right of Eq.
23) have the same time dependence as those in the mag-
etic interaction Hamiltonian of Eq. (21) and agree with
he lab frame product of the magnetic and electric subma-
rices given by Eqs. (14) and (15).

Equation (1) may now be solved directly for steady-
tate solutions by setting �̇̃12

�e�= �̇̃12
�m�=0. We treat the elec-

ric interaction exactly, by applying it as a strong field in
eroth order �V�0��t�=−�̄�e� · Ē�t��. The magnetic dipole in-
eraction is then applied as a perturbation in concert with
he electric dipole interaction in first order �V�1�

−�̄�e� · Ē�t�− �̄�m��t� · B̄�t��, and the equation of motion is
olved for the submatrix coherences by collecting terms at
ach frequency.

This procedure yields first-order results for the coher-
nces, which are
�12
�e� =

1

2
���+

�e� + �−
*�e��12

��1 + i�12�
ei�t���11 − �22�, �24�

�12
�m� =

1

2���+�
�m� + �−�

�m��12

��0 + i�12
�m��

e−i�t

+
��+

�m� + �−
*�m��12

��2 + i�12
�m��

ei�t���11
�0� − �22

�0��, �25�

n the lab frame. Here the counter-rotating magnetic am-
litude that gives rise to the time-independent term in
q. (25) is designated by �±�

�m����
�m�B±

* /�. The detunings
n the resonant denominators are defined by �1��0−�
nd �2��0−2�. In obtaining Eq. (25) the magnetic inter-
ction has been treated as a perturbation, so the popula-
ion difference equals the initial value, which may be as-
umed to correspond to the ground state ��11

�0�−�22
�0�=1�.

opulation saturation effects due to the electric interac-
ion are nevertheless taken into account when the electric
eld interaction is applied a second time to obtain the
rst-order result. The population difference ��11−�22� that
ppears in Eq. (24) is then given by

�11 − �22 =�1 +
�12

�e���+
�e� + �−

*�e��2

�22��1
2 + �12

�e�2�
�−1

. �26�

. CALCULATION OF TRANSVERSE
PTICAL MAGNETIZATION

he steady-state solution for the magnetization M̄—the
ame macroscopic magnetization that appears in the con-
titutive relation B̄=�0�H̄+M̄� associated with Maxwell’s
quations—is given in the lab frame by

M̄ = NTr��̄�m��t�,��t��

= NTr��̄�m��t�,��m��t���e��t��

= − Nŷ�	2���m��t��1��12
�m��t��12

�e��t� + h.c�. �27�

ere M̄ is referenced to laboratory coordinates �x ,y ,z�,
hich parallel the directions of E, B, and the propagation
xis, respectively. Shortly we shall transform to a
-corrected lab frame with coordinates �x ,y ,z� in which
he theory can be compared directly with experiments
hat involve projections of circular currents on the x and z
xes.
With the results of Eqs. (24) and (25) in hand, we now

pecialize to the case of linear polarization. Upon substi-
ution of the coherences (24) and (25) into Eq. (27), the
agnetization of Eq. (27) yields the result

M̄�t� = − ŷ� Ne

2m��1

2�	2�Ly�1���0
�e��12��0

�m��12

��1 + i�12
�e����2 + i�12

�m��
ei�t

+
	2�Ly�1���0

�e��12��0�
�m��12

��0 + i�12
�e����2 + i�12

�m��
e−i�t� + h.c.���11 − �22�.

�28�
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his expression is valid in the lab frame where �21
�m�

e−i�t. The field factors are �0�
�m�=�0

�m�B0
* /�, �0

�m�

�0
�m�B0 /�, and �0

�e�=�0
�e�E0 /�. Only one circular compo-

ent of the electric field interaction contributes to M̄�t�,
hereas both circular components of the magnetic inter-
ction participate. Hence the specific replacement �0

�m�

��+
�m�+�−

*�m�� has been made for the magnetic term, and

0
�e�= 1

2 ��+
�e�+�−

*�e�� for the electric term. This consideration
emoves one factor of 2 from the denominator of the ex-
ression for M̄.
The magnetization in Eq. (28) has the general form

M̄ =
1

2
M̃ei	 + h.c., �29�

here the slowly varying amplitude M̃ is given by

M̃ = − ŷ�Ne

m �1

2�	2�Ly�1���0
�e��12��0

�m��12

��1 + i�12
�e����2 + i�12

�m��

+
	2�Ly�1�*��0

*�e��12��0
��m�*�12

��0 − i�12
�e����2 − i�12

�m��
���11 − �22�. �30�

otice that although the process giving rise to this mag-
etization is second order in the incident fields, the mag-
etic dipole in Eq. (29) oscillates at the fundamental fre-
uency � not 2�.
Before we can determine the dimensionless ratio R of
agnetic to electric-dipole moments as a function of inci-

ent field strength, we must account for the axial versus
olar nature of MD and ED moments. An adjustment is
eeded to account for the fact that of all the electrons that
an be set in motion by the electric field to produce polar-
zation P within a given volume, at most one half can be
eflected to contribute to a magnetic moment M in the
ame volume [2]. For a given number of charges per unit
olume, the amplitude of the oscillatory magnetization
ust therefore be corrected by another factor of 2 before

irect comparison with the amplitude of electric polariza-
ion is possible.

This correction is equivalent to a transformation
x ,y ,z�→ �x ,y ,2z� that rescales the laboratory z coordi-
ate, since oscillatory motion in an arc about B resolves

tself differently on the Cartesian x and z axes (See [2] for
urther discussion). Circular arc motion projected onto ẑ
everses twice as often as the same motion projected on x̂.
s a result, the amplitude of magnetic charge oscillations
rojected onto the propagation axis must be halved for
omparison with the amplitude of electric dipole oscilla-
ion measured along x̂. The halving of the z amplitude
ay be taken into account with the substitution Ly
2Ly in Eq. (30). We also note that the second term in

q. (30) is much smaller than the first due to the �0 factor
n the denominator. To an excellent approximation our ex-
ression for the radiant magnetization at the optical fre-
uency therefore reduces to
M̃ = − ŷN� e

m� 	2�Ly�1��0
�e��0

�m�

��1 + i�12
�e����2 + i�12

�m��
��11 − �22�. �31�

he dimensionless ratio of magnetic to electric moments
s therefore given by

R = � M̃

cP̃
� = �� e

mc� 	2�Ly�1��̃12
�e��̃12

�m�

	2�ex�1��̃12
�e� �

= �� 	2�x�p	/mc��1�

	2�x�1� ��̃12
�m�� . �32�

ince the momentum 	p	� of charge motion cannot exceed
p	�=mc, the ratio of matrix elements in parentheses on
he right side of Eq. (32) cannot exceed unity. Also, the
aximum value of the off-diagonal matrix element �̃12

�m� is
/2 (see Appendix A). So the ratio R has a maximum
alue that is

Rmax = 1/2. �33�

hough not obvious from the form of Eq. (32), it is impor-
ant to note that the ratio of magnetic to electric suscep-
ibility can attain the maximum value Rmax=1/2 given by
q. (33) at nonrelativistic intensities. This may be demon-
trated by direct numerical integration of the equations of
otion [15] and is the subject of a forthcoming publication

16]. Ultrafast growth (on a timescale �t
100 fs [1,3]) of
agnetic response takes place via energy transfer from

lectric field-induced linear motion along x, to the azi-
uthal motion initiated by the magnetic field along 	̂�,

nd is due to the phenomenon of parametric resonance
17].

On the basis of Eqs. (29)–(33), the development to this
tage can be summarized in a few points. The radiant
agnetic emission intensity is predicted to be quadratic
ith respect to the input intensity. It may be enhanced by
lectronic resonance at �1=0 and is governed secondarily
y a parametric detuning factor ��2+ i��−1. It can grow to
value of, at most, one fourth �Rmax

2 =1/4� that of the elec-
ric dipole emission intensity. These findings are in excel-
ent agreement with experimental results [1–3] at inten-
ities ten orders of magnitude below the relativistic
hreshold.

To calculate the magnetic susceptibility, and to com-
are it with the electric susceptibility, we now make use
f Eq. (31).

��m� =
M̃

H0
= �− Ne

mH0
�� 	2�Ly�1���0

�e���0
�m�

�2��1 + i�12
�e����2 + i�12

�m�����11 − �22�

= �− N�0e3

2m2�2 �� �	2�Ly�1��2	1�x�2�

��1 + i�12
�e����2 + i�12

�m�����11 − �22�E0.

�34�

he electric susceptibility ��e� may similarly be deter-
ined by comparing its defining relationship, namely,

P�t� =
1

2
P̃ei�t + h.c. =

1

2
�0��e��− ��E0ei�t + h.c., �35�

ith Eqs. (10) and (24). This yields
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P̃ = 2N�21�̃12
�e� = �Ne2

�
�� �	1�x�2��2E0

��1 + i�12
�e�� ���11 − �22� �36�

nd

��e� = �Ne2

�0�
� �	2�x�1��2

��1 + i�12
�e��

. �37�

n both the expressions (34) and (37), local field renormal-
zation has been ignored. The ratio of magnetic and elec-
ric susceptibilities obtained from these results is

��m����

��e����
= �− �0�0e

2m2�
� �	2�Ly�1��2E0

	2�x�1���2 + i�12
�m��

=
− 2

�c2

�	2���m��1��2E0e−i	p

	2���e��1�
�2
2 + �12

2�m�
, �38�

here 	p�tan−1��12
�m� /�2�. Note that, in the vicinity of

lectronic resonance where magnetic dispersion is larg-
st, the magnetic linewidth is expected to be much less
han the parametric detuning factor ��12

�m���2�. Therefore
p�0 and the signs of electric and magnetic dispersion
re opposite, as depicted in Fig. 1. The matrix element in
he numerator of Eq. (38) reflects transformation of the
agnetic susceptibility as a rotation R�y� about the y

xis. According to Eq. (34), the magnetic susceptibility is
lso proportional to the electric dipole transition moment.
ence the matrix elements 	2�Ly�1� and 	1�x�2� must both
e nonzero for optical magnetization to be allowed, and
he electric field amplitude E0 must be large for it to be
ntense.

Some further comments about selection rules are in or-
er. Explicit evaluation of the magnetic matrix element
etween states of well-defined total initial and final angu-
ar momentum l1 and l2, respectively, using the Wigner-
ckart theorem [18], yields

ig. 1. Plot of the electric (solid curve) and magnetic (dashed
urve) susceptibilities of a 2-level system with various propor-
ions of optically induced magnetic dipole response. The horizon-
al axis corresponds to ��m����=0, and the dashed curves corre-
pond to ��m�=−��e���� /4 (upper curve at left), and ��m�=−��e�

��� /2 (lower left). The linewidth-to-resonant-frequency ratio is
/�0=0.1. All curves assume resonance at �0=500 nm and a
lasma frequency of � =2�1015 rad·s−1.
p
	2�V±
�m��1� = �− �l2−m2

1

2
�B±	�2l2m2���

�m���1l1m1� + c.c.�

�� l2 1 l1

− m2 q m1
� . �39�

ere �1 and �2 refer collectively to any quantum numbers
ther than l and m needed to specify the initial and final
tates exactly. MD and ED interaction matrix elements
re proportional to the same 3-j symbol, but their reduced
atrix elements transform as rotations about ŷ and

ranslations along x̂, respectively. Equation (39) indicates
xplicitly that magnetic interactions induced by circularly
olarized components of the B field �q= ±1� exchange spin
ngular momentum of ±� with the atom. By contrast, lin-
arly polarized fields �q=0� exchange no spin angular mo-
entum with the atom. Nevertheless, at moderate inten-

ities, the combined action of linearly polarized E and B
elds can drive the formation of a parametrically en-
anced, oscillating transverse orbital angular momentum
s specified by Eq. (31). For this to happen, the reduced
atrix elements of R�y� and x must be simultaneously
onzero, and the selection rules �l= ±1 and �m=m2
m1=0 must be satisfied.

. SECOND-HARMONIC AND DC ELECTRIC
IPOLE PROCESSES
lectric dipole moments can also be generated by the joint
ction of optical E and B fields. Two additional processes
merge from this analysis by considering expectation val-
es of the electric dipole operator in combination with the
agneto-electric coherences developed in Eqs. (24) and

25). One process yields a radiant polarization at the
econd-harmonic frequency, and the other produces a
tatic electric dipole in the direction of propagation of
ight.

We now consider electric dipole moments that develop
erpendicular to x̂ and ŷ. A z-directed, magnetically in-
uced electric dipole moment is clearly distinct from ei-
her the linear electric dipole induced along x̂ or the non-
inear magnetic dipole induced along ŷ. Its macroscopic
olarization is calculated using

P̄ = NTr��̄�e�,��t��, �40�

here

�̄�e� = �0
�e�ẑ. �41�

y substituting Eqs. (24), (25), and (41) into Eq. (40), and
pecializing again to the case of linear input polarization,
ne finds in the Cartesian lab frame where the charge os-
illation along z is at a doubled frequency (i.e., ��21

�e��z
e−2i�t) that

P̄�t� = Nẑ��21
�e��12

�m��t��12
�e� + h.c.�

= Nẑ��1

2

�21
�e���0�

�m��12��0
�e��12

��1 + i�12
�e����0 + i�12

�m��
e−2i�t + h.c.�

+ �1

2

�21
�e���0

�m��12��0
�e��12

��1 + i�12
�e����2 + i�12

�m��
+ h.c.�� . . . �42�
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his expression for the electric polarization driven jointly
y E and B contains two terms of different frequency. The
rst is a field at 2� that generates second-harmonic ra-
iation. Unlike the magnetization at frequency � in Eq.
31), the second-harmonic signal is longitudinally polar-
zed and lacks the parametric resonance factor ��2
i��−1, so it is expected to produce only weak emission
erpendicular to the pump wave. The second term is a
ero-frequency term that predicts a static charge separa-
ion induced by light in dielectric media illuminated by
oderately intense coherent light. Since it originates

rom the oscillatory coherence in Eq. (23) and contains the
ame parametric denominator as the magnetization in
q. (31), its magnitude is expected to be strongly en-
anced. In ultrashort pulse interactions, this effect will
herefore generate intense longitudinally polarized tera-
ertz radiation, although conventional phase-matching of
he output will not be possible.

These same optical effects were predicted previously
sing steady-state analysis of a classical model of electron
otion subject to external electric and magnetic forcing

elds and Hooke’s law restoring forces [2]. The present
ensity matrix treatment has the merit of identifying the
elative intensities, detuning dependences, emission fre-
uencies, selection rules, directionality and multipole
haracter of these effects in an independent, systematic
ay that requires no interpretation and is valid near

esonances.

. MAGNETIC DISPERSION
s one example of an application of these findings, we
ow briefly discuss the dispersion of the magnetic dipole
esponse calculated in Eqs. (28) and (38) and its connec-
ion with refractive index behavior. The refractive index
f a medium is determined by the relative permittivity �r

nd permeability �r according to n=
�r�r. Ordinarily the
ermeability of dielectrics is very close to the vacuum
alue �r=1 at all frequencies, and because it is constant it
oes not contribute to dispersion of the index. However,
hrough the intensity dependence of the magnetic suscep-
ibility ��m��I�, the refractive index n�I�

�1+��e���1+��m��I�� itself becomes intensity-dependent.
�I� can therefore be modified using induced magnetic
ispersion, particularly near electronic resonances [19].

��m��I� and ��e� have opposite signs and a small phase
hift as illustrated in Fig. 1. Consequently, the main effect
f magnetic dispersion is to reduce the refractive index. In
ddition, for a sufficiently sharp electronic resonance at
=�0, there is a frequency range on the red (long wave-

ength) side of resonance where the optically induced per-
eability �r may acquire negative values.
In the figure, the dashed curves illustrate induced mag-

etic susceptibilities of different magnitudes, near a reso-
ance at �0=500 nm. The linewidth-to-frequency ratio is
rbitrarily taken to be � /�0=0.1. The plasma frequency
p��Ne2 /�0me�1/2 is assumed to be �p=2�1015 rad/s,
lose to the value for silica. The ratio R= ���m��I� /��e�� of
agnetic-to-electric susceptibility has a value determined

y the incident intensity and lies between zero and Rmax
1/2. R is negligible at low intensities, grows linearly at
ntermediate intensities, and eventually reaches Rmax
t a “saturation” intensity Isat that is material-dependent
3]. Above Isat the magnetization ceases to grow quadrati-
ally, becoming merely proportional to the incident
ntensity rather than to its square. In this “saturation” re-
ime, the magnetic susceptibility therefore maintains a
xed proportionality with respect to the electric suscepti-
ility.

. CONCLUSION
he main results of this paper are contained in Eqs. (31),

33), and (42). The first of these predicts that light of fre-
uency � induces a coherent oscillatory magnetization
hat radiates at frequency � in bound electron systems.
his dynamic magnetization M arises via a quadratic
onlinearity [20] driven by the product EB of the optical
eld amplitudes and can be comparable in magni-
ude to the electric polarization P at high but subrelativ-
stic intensities. Equation (33) shows that the maximum
atio of magnetic-to-electric susceptibility is Rmax
���m� /��e��=1/2, without resorting to classical arguments
ased on geometric considerations or Maxwell’s equa-
ions. Thus the maximum intensity of magnetic dipole
mission from insulators, which depends on the square of
he susceptibility, is predicted to be one fourth that from
lectric dipole polarization, which is in excellent quanti-
ative agreement with experiments to date. The coher-
nce established by this type of interaction also gives rise
o two other nonlinear optical effects. The first term in
q. (42) describes magnetically induced second-harmonic
eneration, in which the emitted electric field lies along ẑ,
arallel to the propagation of the pump light. The second
erm is static charge separation. The orientation of the
tatic electric dipole is again along ẑ. Finally, we note
hat, according to Eqs. (31) and (36), the calculated elec-
ric and magnetic susceptibilities have opposite signs
cross electronic resonances, indicating that the induced
agnetic response is diamagnetic. As a result, the mag-
etic dispersion that accompanies transverse optical mag-
etization near resonances provides a unique new method
f modifying the refractive index of unstructured dielec-
rics.

The enhancement of magnetic response by a factor
lose to the speed of light as described in this work is due
o parametric resonance. This phenomenon manifests it-
elf in Eqs. (31) and (42) through the doubled-frequency
etuning parameter �2, but its impact only becomes ap-
arent in numerical simulations [16]. The result of this
ynamic enhancement is that magnetic dipole response
an be nearly as intense as the electric response at inten-
ities far below the relativistic threshold [21] due to
ransfer of energy between the motions associated with
he E and B components of the light field. Physically, this
rocess requires both an electric dipole transition and a
agnetic dipole transition to be driven on the atom simul-

aneously by linearly polarized incident light. It is there-
ore not surprising that the transverse MD and ED selec-
ion rules require that rotations about y transform the
ame way as translations along x, and the MD and ED
ransition moments must be nonzero for the same initial
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nd final states. This requirement is met for states of dif-
erent parity in many crystallographic point groups.

In systems that satisfy these symmetry requirements,
n important role can be anticipated for the manipulation
f orbital and spin magnetism by optical waves. In a man-
er quite different from earlier experiments that demon-
trated ultrafast control over magnetic moments without
pplying static magnetic fields [14,22–24], the present re-
ults explain how transverse coherent magnetization can
enerate magnetic moments that are eight to ten orders
f magnitude larger than expected, and internal magnetic
elds that are in the Tesla range, by a new process at sub-
elativistic intensities. Since optical modulators can pro-
ide real-time control of the intensity and frequency of
ight within large volumes of dielectric material, this find-
ng may enable programmable transformation optics, pro-
ongation of coherence times for spintronic circuitry, ul-
rafast reading and writing of magnetic memories, and a
ew family of magnetic sensors or imagers. The capability
f creating large magnetic moments or torques at an op-
ical focus in dense systems of bound electrons, including
ondensates, should provide new modalities of spin con-
rol for research. Short-period magnetic field distributions
roduced by intense standing waves of light may be use-
ul for atom optics or free electron lasers operating at
hort wavelengths. The availability of programmable dis-
ributions of intense magnetic fields could be used to im-
rove the fidelity of compact quantum information sys-
ems based on spin qubits. Furthermore, these results
ave significant implications for high-field and plasma
cience, as well as laser fusion, since they make it clear
hat in ultrafast pulse interactions magnetic dynamics
annot be ignored at pre-pulse intensities even ten orders
f magnitude below the relativistic threshold on very
hort timescales. Finally, the existence of a mechanism
hereby light causes static charge separation in noncon-
ucting media has been outlined. This opens the door to
oth capacitive and inductive electric power generation
sing coherent light.

PPENDIX A
ere it is shown that the maximum value of an off-
iagonal density matrix element in a 2-level system is
ne-half. Consider a system described by the wavefunc-
ion

�� = �
i

ci�i� = cos ��1� + sin ��2�. �A.1�

ssume that the system is closed so that �
i

�ci�2=1. Now in-

roduce the density matrix elements �ij�cicj
* and rewrite

he closure expression as

Tr��� = �
i

�ii = Tr��� = 1. �A.2�

he Cauchy–Schwarz inequality dictates that

��
i

cici�2
� �

j
�cj�2 · �

k
�ck�2, �A.3�

hich in terms of density matrix elements becomes
�
i,j

�ij�ji � �
j

�jj · �
k

�kk = Tr��� · Tr��� = 1. �A.4�

riting this out explicitly, we find

��11
2 + �22

2 � + 2��12�2 � 1, �A.5�

2��12�2 � 1 − ��11
2 + �22

2 �. �A.6�

ow since �11
2 =cos4 � and �22

2 =sin4 �, the minimum value
f ��11

2 +�22
2 �, which yields the maximum value of ��12� in

he inequality, may be found by setting its derivative with
espect to � is equal to zero:

�

��
��11

2 ��� + �22
2 ���� = − 4 cos3 � sin � + 4 sin3 � cos � = 0.

�A.7�

his condition is sin �= ±cos �, and the corresponding so-
utions for � are given by

� = ±
�2n + 1��

4
, n = 0,1,2 . . . . �A.8�

or these values of � one finds the minimum sum of the
quared populations to be

��11
2 + �22

2 �min =
1

2
. �A.9�

ubstitution of Eq. (A.9) into Eq. (A.6) yields ��12�max
2

1/4, or

��12�max �
1

2
. �A.10�
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