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Density matrix theory is presented to explain recent experimental observations of intense optically induced
magnetism due to a “mixed” type of nonlinearity proportional to the product of the electric- and magnetic-field
strengths of light. Two previously unknown quadratic optical effects are predicted—namely, transverse optical
magnetization and magnetic charge separation—and quantitative agreement is obtained with experimental
results regarding the former of these. The mechanistic origin of a third quadratic nonlinearity, namely,
magneto-electric second-harmonic generation, which is familiar on a phenomenological basis in classical non-
linear optics, is also examined. Transverse optical magnetism is shown to enable large permeability changes at
optical frequencies accompanied by magnetic dispersion near resonances. This phenomenon provides for all-
optical generation of magnetic moments, large transverse magnetic fields, static electric dipoles, and terahertz
radiation in (unbiased) transparent homogeneous dielectrics or semiconductors. Intriguing possibilities for ap-
plications are considered, including magneto-electric refractive index modification, optical electric power gen-
eration, and spin control. © 2009 Optical Society of America
OCIS codes: 190.0190, 190.4410, 190.7110, 320.7120.

1. INTRODUCTION

Throughout the long history of nonlinear optics, an enor-
mous number of phenomena have been discovered in
which electromagnetic waves combine to alter the proper-
ties of materials in complex ways. Nonlinear interactions
proportional to various powers of the incident electric
fields (E?, E3, etc.) have contributed greatly to the emer-
gence of entire scientific fields such as ultrafast photo-
chemistry, quantum optics, holography, quantum infor-
mation, spintronics, and laser cooling. Although nonlinear
optics is now a mature topic, the possibility of having the
magnetic field of light work in concert with the electric
component to yield a nonlinear magnetic response propor-
tional to the product of electric and magnetic field
strengths has gone unnoticed. Longitudinal magneto-
optic effects such as the Faraday and inverse Faraday ef-
fect are well documented, but transverse magneto-electric
(EH) effects in which both contributing fields oscillate at
the optical frequency are unknown. In the past, the
strength of magnetic dipole interactions was invariably
thought to be limited to a small fraction of that of electric
dipole interactions. Following a recent discovery [1], how-
ever, new geometries have become available for all-optical
interactions and magnetic device applications that pro-
vide unexpectedly direct ways of controlling spins and
creating magnetic moments in ordinary matter. An en-
tirely new class of nonlinear optical interactions is emerg-
ing that holds promise for unanticipated electromagnetic
technologies based on natural materials. This article for-
mulates the quantum theory of this class of effects
against the backdrop of recent observations of transverse
optical magnetism.

Recently published experiments [1-3] and classical
analysis [2] have revealed a quadratic mechanism
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whereby intense magneto-electric response can be ob-
tained in (nominally nonmagnetic) dielectric media. Mag-
netic dipole emission nearly as intense as the electric po-
larization has been reported at infrared and visible
wavelengths in transparent dielectric liquids (CCly, C¢Hg,
and H50), far from any electronic resonances. Although
the possibilities for magneto-electric material modifica-
tion with light are expected to be more dramatic on reso-
nance, where a quantum mechanical analysis is required,
no quantum treatment of this problem has appeared.
Here an analysis is made of the parametric origin of in-
tense magnetic dipole emission and magnetization in-
duced by linearly polarized optical waves in bound elec-
tron systems using the density matrix. This theory is in
quantitative accord with experiments performed to date
at nonrelativistic intensities in several insulators. Fur-
thermore, it predicts the possibility of magneto-electric
modification of the index of refraction in low-loss natural
materials, and introduces a novel approach to generate
intense magnetic fields that may be of use in many disci-
plines that rely on spin physics.

Since the time of Maxwell [4], it has been widely ac-
cepted that the effects of the magnetic component H of
light can be ignored compared to effects of the electric
component E at ordinary intensities. Though magnetic
phenomena exhibit close parallels to electric behavior at
relativistic intensities, strong magnetic response is ab-
sent in the optical range under moderate irradiation con-
ditions. This has been attributed in the past to the com-
parative weakness of the (optical) magnetic Lorentz force.
Arguments have been made suggesting that, unlike the
electric permittivity ¢, the magnetic permeability u loses
even its physical meaning at optical frequencies [5]. Con-
sequently, the many possibilities available through non-
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linear optics for controlling the propagation of electro-
magnetic waves by altering the permittivity e(w,E,H)
with external fields were thought not to extend to the per-
meability u(w,E,H). In natural materials, where w typi-
cally has the value p( characteristic of vacuum, it ap-
peared that arbitrary control over the spatial properties
of waves that depend in principle on both ¢ and u was im-
possible. Until now, controlled variation of magnetic per-
meability even at relatively low frequencies in the giga-
hertz range has been realizable only in artificial materials
called metamaterials [6]. Experimental research on
transformation optics [7,8], which calls for controlled spa-
tial variations of ¢ and u together with low losses at much
higher frequencies, therefore faces even greater chal-
lenges. In this paper, however, a new mechanism is ana-
lyzed that is capable of generating intense magnetic fields
at single points, or along surfaces or in macroscopic vol-
umes, and allows precise control of magnetic dispersion in
low-loss, homogeneous dielectrics. The magnetic fields
and dipole moments resulting from transverse optical
magnetism are derived in subsequent sections, and then
their possible relevance is considered to next-generation
magnetic memories [9], spintronics [10], control of spins
in Bose-Einstein condensates [11], atom optics [12],
quantum information science [13], and electric power gen-
eration.

Research performed in transparent dielectrics (water,
CCly, and benzene) at optical intensities as low as I
~108 W/cm?, fully ten orders of magnitude below the
relativistic optics threshold of I~10'® W/ecm?, has now
provided experimental evidence of a second-order
magneto-electric optical process capable of generating in-
tense magnetic dipole emission [1-3]. The measured mag-
netic susceptibility can be as large as half the electric di-
pole susceptibility, even far from any electronic
resonances. Classical theory [2] that accounts for these
surprising effects through the leading term of the multi-
pole expansion, and predicts many new magneto-optical
phenomena, agrees with these observations. However a
quantum mechanical analysis of transverse optical mag-
netism has not yet been provided.

The main purpose of this paper is, therefore, to formu-
late a quantum mechanical theory of the intense trans-
verse magnetic dipole moments and static electric dipole
moments that form in bound electron systems as the re-
sult of irradiation with coherent light of moderate inten-
sity. A radiant magnetization that is driven simulta-
neously by the optical electric and magnetic fields is first
calculated analytically using density matrix analysis of
2-level atoms or molecules. The calculation shows that di-
rectly driven magnetic resonance is possible, and by con-
sidering the induced magnetic dispersion near an elec-
tronic resonance, predictions are made of intensity-
dependent, magnetic modifications of the refractive index
in dielectric media. We show that it is theoretically pos-
sible to attain negative permeability in natural materials
that are completely homogeneous, and that moderately
intense light can be used to program the spatial distribu-
tion of u(l,w). We further deduce that static charge sepa-
ration takes place under the same conditions, and we
mention briefly the prospect of electric power generation
in transparent insulators.
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2. DENSITY MATRIX ANALYSIS

We begin by considering a system of identical 2-level at-
oms or molecules with a resonance frequency wg=(wy
—wp) subjected to an electromagnetic plane wave of fre-
quency o that propagates in the positive z direction. The
light is linearly polarized along X and detuned from reso-
nance by A= wy—w. Population dynamics and coherences
are found using the density matrix equation of motion:

lﬁp: [H’p] _iﬁprelax‘ (1)

The system Hamiltonian H=H,+V(¢) is assumed to con-
sist of a static part,

H, =hoy1X(1] + fiwg|2)(2], 2

which describes the unperturbed diagonal matrix ele-
ments of the static Hamiltonian and an optical interac-
tion V of the combined dipole form

V=-ji,-E-f,-B. 3)

In the semiclassical approach used here, p,.;,. describes
phenomenological relaxation of individual density matrix
elements in the Schrodinger picture. Uppercase rate con-
stants I';; are used to describe coherence decay between
levels i and j and lowercase constants vy;; give the total
population decay rate of a particular level i. The irreduc-
ible representations of the (polar) electric and (axial)

magnetic components of the optical wave are

_ 1 _
Bit)=- J[B,s +E_8,Je + he, (4)

_ i _
B(t)=- §[B+é_ -B_g,Je* + h.c.. (5)

In these expressions ¢=wt-kz is the optical phase and
the circular basis vectors &,=—(X+iy)/\2 are components
of the rank one spherical tensor. A.c. is an abbreviation for
Hermitian conjugate. Carets are used throughout this pa-
per to denote unit basis vectors. In the case of linear po-
larization along x, we note the correspondences

E,=E_=Ey/\2 (6)

and B,=B_=B,/y2, which assume the circular compo-
nents have equal amplitudes. The irreducible electric and
magnetic dipole moments induced by the field have mag-
nitudes and directions given by

A== (p, + 08 ), (7)

and
A == i(uME - ey, (8)

respectively. When the circular components w, of these
moments are equal, the electric and magnetic moments
themselves point along & and y—parallel to the inducing
fields.

Substitution of Egs. (4)—(8) into Eq. (3) furnishes the ir-
reducible form of the interaction Hamiltonian. The use of
Egs. (2) and (3) in Eq. (1) then permits solution of the den-
sity matrix p(¢). The main purpose of this paper is to pre-
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dict the temporal behavior of induced electric and mag-
netic dipole moments in the medium by calculating the
expectation values <u©(t)>=Tr{u®,p(t)} and <u™(t)
> =Tr{u™, p(¢)}, respectively.

3. MATRIX ELEMENTS OF TRANSVERSE
MAGNETIC MOMENTS

Before proceeding to solve the equation of motion for the
density matrix, a discussion of the calculation of expecta-
tion values is warranted due to the transverse nature of
the magnetic dipole moment to be considered here. Indi-
vidual light quanta carry spin angular momentum with
projections on the axis of propagation given by —#, +#, or
0, depending on whether their state is left-circular, right-
circular, or linear polarization respectively. In linear
single-field MD interactions, the angular momentum
needed to create or destroy a magnetic dipole moment is
therefore provided by an appropriate state of circularly
polarized incident light. However, in what follows, the in-
duced angular momentum is not along 2, which denotes
the propagation axis, but along the optical B field (chosen
here to point along the transverse y direction). The in-
duced transverse moment, therefore, has no projection on
the axis of propagation and can be generated without the
transfer of any angular momentum from the optical field.
For the quadratic interaction of interest here, it will be
shown that when the angular momentum of the light field
is zero (the case of linearly polarized light), a large mag-
netic moment that oscillates at the optical frequency itself
can be induced perpendicular to 2. The time average value
of this orbital angular momentum is zero so that angular
momentum is conserved overall. However, this process
gives rise to intense, radiant magnetic dipole fields.

To facilitate a comparison of longitudinal and trans-
verse magnetic moments, it is convenient to consider two
coordinate systems in which the polar axis is either par-

allel or perpendicular to the wavevector z=£k2. First we
discuss longitudinal magnetic moments by considering
the coordinate system (r,6,¢) in which the polar and
quantization axes are parallel to 2=, and the azimuthal
angle ¢ is measured with respect to the x axis. This is the
geometry of conventional magnetic dipole transitions. The
electric dipole transition moment on a single atom is

()19 = Hu(E))1g

7 J AV (r,t)eri(r,t) + h.c.

f'fchi(t)J{(r)ercz(t)wQ(r)+h.c.

= A1 u?|2)pa (2) + h.c. 9)

The electric field along x changes only the radial coordi-
nate r of charge position. Thus 7#=%, and the expectation
value of the electric dipole is

() = Tr{n', p} = #(n12p91 + H21P12)s (10)

where M(lez)=(1|u(e)|2> and pgy(t)=c](t)cy(t). The trace in Eq.
(10) is, in general, a sum over all states of the system.
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Here however, we assume that the dynamics are domi-
nated by only two states. State 1 is the ground state and
state 2 denotes the particular excited state that has mini-
mum detuning from the incident light frequency and op-
posite parity with respect to state 1. The quantities ¢; and
¢y are the probability amplitudes of state 1 and state 2,
respectively.

The magnetic dipole transition moment for a one-
photon interaction connecting states 1 and 2 is

<ﬁ(m)(t)>12 = (e/2m) f dV(/ﬂl‘(r, 0, 0,t)7 X pip(r, 6, 0,t) + h.c.

= (e/2m) f AVe, (00, 6,)Lest) olr, 6, 0) + huc,

(11)

in terms of the angular momentum operator L=7Xp. In
this case, the expectation value is given by the trace of the

magnetic dipole operator u™ =(e/2m)L with the density
matrix:

(™) = (1|@™)2)pa (¢) + h.c. = Tr{p™,p}.  (12)

At low intensities the magnetic moment in Eq. (12) is
negligible for linear polarization, because the linear mo-
mentum p of the electron is very nearly parallel to its dis-
placement. The Lorentz force is negligible compared to
the force of the electric field at nonrelativistic intensities.
The cross product in the integrand of Eq. (11) and the as-
sociated angular momentum are therefore nearly zero.
Only an electric dipole oriented along x is induced. In the
case of circular polarization, the electron follows the elec-
tric field adiabatically, circulating around the propagation
axis, inducing a steady magnetic moment oriented along
the z axis (7Xp#0). This motion mediates the inverse
Faraday effect caused by circularly polarized light [14],
which is not of interest in this paper. Consequently, in
one-photon, electric-field-mediated interactions, only the
angular momentum carried by the field E(z,¢), where z is
the quantization axis, can be transferred to the atom
and the initial and final states |1) and |2)
must differ in magnetic quantum number m accordingly
(MQ =mix 1) .

In the case of an interaction mediated jointly by the E
and B components of a linearly polarized field, the orien-
tation of the magnetic moment is along the laboratory y
axis, and its calculation is significantly different because
two driving forces contribute to the motion. The Lorentz
force causes the linear momentum induced by the electric
field E to acquire a small transverse component that is
azimuthal with respect to the B component of the optical
field. We therefore introduce new source coordinates
(r',0',¢") with a polar axis along B (¢’ =y). As before E de-
fines the &' =x axis. The third basis vector is y’'=-2, and
¢’ is considered to be measured from the y’ axis. In this
primed coordinate system the linear momentum may be

written as ﬁ’:f’pr,+f9’p,,,+<2>’p¢,. The expression for the
magnetic moment in Eq. (11) becomes
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</._L(m)(t)>12=(€/2m)fdV’l/f’;(r’,gl,go”t)F’

X[l_)r/ +I3€/ +ﬁ4pl:|¢[2(r’7 gra(P,:t) + h.C.

—-e

= %5; f av'y (r',0',¢0" OF p (', 6',¢',t)

+h.c., (13)

since #' X p, =0 and #' X (p,¢')=—p 5. Here the assump-
tions have been made that p, =0 (since neither field
drives motion in the # direction) and that r’ is suffi-
ciently slowly varying so that the amplitude of an oscilla-
tory magnetic moment can be well defined and slowly
varying too. Equation (13) is implicitly written in the ro-
tating frame where the rapid time dependence is associ-
ated with the azimuthal momentum p, and the magnetic
moment points in the expected direction anti-parallel to
the B field (along —y).

Under the action of the forces due to orthogonal fields E
and B, the time dependence of radial (#') and azimuthal
(¢’) motions may differ. Hence we assume the wavefunc-
tion is separable according to W(r',0,¢’,t)
=(r',t)y(0',¢’,t) and introduce separate c coefficients
for the radial and angular parts of the wavefunction as
follows: y(r',t)=c@@)y(r') and (0, ¢ ,6)=c™ @)W 0, o).
Correspondingly, we define electric and magnetic density
sub-matrices by pgje»)=c;(e)c§e) and pgjm)=c;(m)c§m) in the labo-
ratory reference frame. The time development of pg?) is de-
termined by E, and that of pEJ’-n) is determined by B. Both
fields oscillate at the optical frequency, so by invoking the
slowly varying envelope approximation (SVEA) the two
submatrices can be written in the lab frame as

p(*")(t) — 5(e)eiwt (14)
and

p(E) = e, (15)

where 5© and p™ designate the slowly varying ampli-
tudes of the electric and magnetic coherences.

In terms of these quantities, the expression for the
transverse magnetic moment in Eq. (13) becomes

(B @) = - 31|25 ()P + hec., (16)

where we have made the replacement (1|u!™)|2)
=(1|(e/2m)r'p ,/|2). According to Eq. (16), when the direc-
tion of the magnetic field is fixed along y, the expectation
value for the transverse magnetic moment is given by

<ﬁ(m)(t)> _ —yTr{/.L(m),P(m)(t)ﬁ(e)}- (17)

The main time dependence in this expression for the mag-
netic moment is associated with p(zrf)(t) in the rotating
frame. The envelope of the electric contribution desig-
nated by 5(261) is assumed to vary little during an optical pe-
riod. The submatrices p™(¢) and p®(¢) are designated as
magnetic and electric, using the superscripts m and e, be-
cause the former describes temporal evolution that is azi-

muthal with respect to the axis of the optical H field,
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while the latter describes radial oscillations of the wave-
function in the direction of E.

Note that the expectation value of the magnetic mo-
ment in Eq. (16) is second order in the wavefunction as
expected, not fourth order. The full density matrix is just
the product of the submatrices p™(¢) and p®(t), given ex-
plicitly by

p =0 = [, )41 6, 0,0) U 0, 0,0 (i, 1)] = p™ () p(2).
(18)

The submatrices p©(t) and p™(¢) merely describe impor-
tant degrees of freedom in the overall motion driven by
applied fields £ and B. In the next section these kinemati-
cally distinct submatrices are separately evaluated in or-
der to calculate the induced magnetization and other mo-
ments that result from combined electric and magnetic
forces.

4. STEADY-STATE SOLUTION OF THE
DENSITY MATRIX

To write the total magneto-optical interaction consistent
with any particular choice of reference frame requires
some care. The reason for this is that interactions driven
by EB involve motional effects of two orthogonal fields,
one of which is a polar vector (E(¢)) and the other of which
(B(?)) is axial. The rotating frame of linear optical inter-
actions governed by E(t) alone, for example, has an axis
along z, whereas the magnetic moment induced by the
combined action of E(¢) and B(¢) involves currents circu-
lating about the y axis. In this paper the joint effect of the
electric and magnetic interactions will ultimately be de-
scribed in the lab frame of reference, but to provide per-
spective on the kinematics, use will be made of a sequence
of three reference frames. The calculation of dynamics be-
gins in the rotating frame, is next transformed to the or-
dinary lab frame, and finally ends up in a z-adjusted lab
frame.

Customarily, the rotating wave approximation is intro-
duced in optical analysis to solve for system dynamics.
One result of this is that in the frame co-rotating with a
circular component of E(¢), the induced electric dipole is a
constant. For this reason the electric dipole interaction is

written as -u©-E(¢), where only the field varies with
time. However, in the same reference frame, the magnetic
moment oscillates at the optical frequency. This is implied
by Egs. (15) and (17) where magnetic charge oscillation
varies rapidly with time as pg;‘)ocexp(iiwt) whereas the
electric coherence is only slowly varying. To include elec-
tric and magnetic interactions in an atom-field Hamil-
tonian referenced to a single frame, this must be taken
into account.

The interaction Hamiltonian in the rotating frame has
the form

1
Vit) = - 5ﬁ[(g"f’”) + ) 4+ (Q©

+QMe)e’ + () + Qe )] + b, (19)

Here QS)E,U,(;)Eilﬁ and Q(tm)E,u,(Im)Bi/ﬁ are the electric
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and magnetic interaction terms for positive or negative
(%) helicity. The time dependence of the magnetic inter-
action either adds to or subtracts from that of the electric
field, and produces interaction terms at frequencies of 0
and 2w as shown by Eq. (19). The electric and magnetic
transition matrix elements of V are therefore

1 .
Vg = AIVO2) =~ ao) + Qe + he|2) (20)
and

1
Vim = (1|Vim)|2) = - §ﬁ<1|[9i(m) + Qf(m)] +h.c.|2)

1 A
- §h<1|m<+m> + Q™% 4 h.c.|2). (21)

The charge oscillations induced by an electric field act-
ing alone follow the time dependence of E. Hence the
electric-field-induced coherence has the form p (t)
—p(e)e“P in the lab frame or p(e)(t 5(122) in the rotating
frame, as previously indicated in Eq. (14). Charge oscilla-
tions that are jointly driven by electric and magnetic
forces similarly follow the time dependence of the applied
fields, and this gives rise to three distinct frequencies of
oscillation in the lab frame, namely, 0 and +2w, because
there are combination terms in the product of the driving
fields E and B.

1 1
E@)B(t) = { E[Eofc]ei‘P + h.c. } { E[Bu)?]ei‘" + h.c. }

1
= —{EBoe**+ E Bie

-2 * *
1 "“+EB,+E By}

(22)

The coherence in Eq. (18) is therefore expected to take the
form

pra(®) = P (0)P(w) + P ()5 (@)e® = Bro(w = 0)

+ pra(2w)e?® (23)

in the lab frame. Notice that the terms on the right of Eq.
(23) have the same time dependence as those in the mag-
netic interaction Hamiltonian of Eq. (21) and agree with
the lab frame product of the magnetic and electric subma-
trices given by Eqs. (14) and (15).

Equation (1) may now be solved directly for steady-
state solutions by setting p\)=p\2'=0. We treat the elec-
tric interaction exactly, by applying it as a strong field in
zeroth order (WO)(t)z—ﬁ(e)-E(t)). The magnetic dipole in-
teraction is then applied as a perturbation in concert with
the electric dipole interaction in first order (V)

=—u®. -E(t)- _(’”)(t) B(t)), and the equation of motion is
solved for the submatrix coherences by collecting terms at
each frequency.

This procedure yields first-order results for the coher-
ences, which are
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1) (09 + 0",

e _ _§ = it

= — poa), 24
P12= 5 (B, +iT0y) (P11~ p22) (24)
oy L0010
pm I —1Lwi
T2 (wp+il)
[+ 0™,
WO e, (25)

+ _—
(Ag+iT(P)

in the lab frame. Here the counter-rotating magnetic am-
plitude that gives rise to the time-independent term in
Eq. (25) is designated by Q;(m)z ,U,(I'")Bi/ #i. The detunings
in the resonant denominators are defined by A;=wy—w
and Ay = wy—2w. In obtaining Eq. (25) the magnetic inter-
action has been treated as a perturbation, so the popula-
tion difference equals the initial value, which may be as-
sumed to correspond to the ground state (p(()) p(202)—1).
Population saturation effects due to the electric interac-
tion are nevertheless taken into account when the electric
field interaction is applied a second time to obtain the
first-order result. The population difference (p;;—pgo) that
appears in Eq. (24) is then given by

" -1
rHlof + o2

puu=pe=|l+ —F——— . (26)
Yool AT +T19%)

5. CALCULATION OF TRANSVERSE
OPTICAL MAGNETIZATION

The steady-state solution for the magnetization M—the
same macroscopic magnetization that appears in the con-

stitutive relation B= ,u,o(ﬁ +M) associated with Maxwell’s
equations—is given in the lab frame by

M =NTr{p"™(¢),p(t)}
= NTr{E™(¢), 0™ (#)p ()}

== N3[2|™ @[ 1)pl5 @)pi3(2) + hucl. (27)

Here M is referenced to laboratory coordinates (x,y,z),
which parallel the directions of E, B, and the propagation
axis, respectively. Shortly we shall transform to a
z-corrected lab frame with coordinates (x,y,z) in which
the theory can be compared directly with experiments
that involve projections of circular currents on the x and z
axes.

With the results of Egs. (24) and (25) in hand, we now
specialize to the case of linear polarization. Upon substi-
tution of the coherences (24) and (25) into Eq. (27), the
magnetization of Eq. (27) yields the result

Ne) (@I, IO 1A e,
2m (Ay +iT)(Ay +il)

-

@IL, | DI 1oL Q6™ s
+
(wg +il'Y)(Ag +iT(P)

_iwt:| +h.c. ((p11—p22)-

(28)
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This expression is valid in the lab frame where w7
xe”i  The field factors are Q(’)(m) =,u,E)m)BZ/ f, Qg")
=,u,g")Bo/ i, and Qg)z,uf)e)EO/ fi. Only one circular compo-
nent of the electric field interaction contributes to M(2),
whereas both circular components of the magnetic inter-
action participate. Hence the specific replacement Qg")
=[erm)+Qf(m)] has been made for the magnetic term, and
)= %[Q(f)ﬂ)i(e)] for the electric term. This consideration
removes one factor of 2 from the denominator of the ex-

pression for M.
The magnetization in Eq. (28) has the general form

M =—Me' + h.c., (29)

DN | =

where the slowly varying amplitude M is given by

A~

M=-y

2| (A +iTE)(Ay +iT13)

_ (Ne>1 @IL, | DI 11506 1
m

(2IL, 1112 hal 0 ™ Ty

(wo — T (A — i)

(11— p22)- (30)

Notice that although the process giving rise to this mag-
netization is second order in the incident fields, the mag-
netic dipole in Eq. (29) oscillates at the fundamental fre-
quency  not 2w.

Before we can determine the dimensionless ratio R of
magnetic to electric-dipole moments as a function of inci-
dent field strength, we must account for the axial versus
polar nature of MD and ED moments. An adjustment is
needed to account for the fact that of all the electrons that
can be set in motion by the electric field to produce polar-
ization P within a given volume, at most one half can be
deflected to contribute to a magnetic moment M in the
same volume [2]. For a given number of charges per unit
volume, the amplitude of the oscillatory magnetization
must therefore be corrected by another factor of 2 before
direct comparison with the amplitude of electric polariza-
tion is possible.

This correction is equivalent to a transformation
(x,y,z)—(x,y,2z) that rescales the laboratory z coordi-
nate, since oscillatory motion in an arc about B resolves
itself differently on the Cartesian x and z axes (See [2] for
further discussion). Circular arc motion projected onto 2
reverses twice as often as the same motion projected on x.
As a result, the amplitude of magnetic charge oscillations
projected onto the propagation axis must be halved for
comparison with the amplitude of electric dipole oscilla-
tion measured along x. The halving of the z amplitude
may be taken into account with the substitution L,
—2L, in Eq. (30). We also note that the second term in
Eq. (30) is much smaller than the first due to the o, factor
in the denominator. To an excellent approximation our ex-
pression for the radiant magnetization at the optical fre-
quency therefore reduces to
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_ (e) @[L,|nofagm
Zm:—y —
m ) (A +iT'Y)(Ay +iT(P)

(p11—po2). (1)

The dimensionless ratio of magnetic to electric moments
is therefore given by

e |2 <L)<2|Ly|1>5<35§’3)
e | |\me) (2lex1)py
(2lx(p /me)|1) o
=‘( @lx/1) )”” 32

Since the momentum (p,) of charge motion cannot exceed
(po)=mec, the ratio of matrix elements in parentheses on
the right side of Eq. (32) cannot exceed unity. Also, the
maximum value of the off-diagonal matrix element 5(1’3) is
1/2 (see Appendix A). So the ratio R has a maximum

value that is
R =1/2. (33)

Though not obvious from the form of Eq. (32), it is impor-
tant to note that the ratio of magnetic to electric suscep-
tibility can attain the maximum value R,,,=1/2 given by
Eq. (33) at nonrelativistic intensities. This may be demon-
strated by direct numerical integration of the equations of
motion [15] and is the subject of a forthcoming publication
[16]. Ultrafast growth (on a timescale A¢ <100 fs [1,3]) of
magnetic response takes place via energy transfer from
electric field-induced linear motion along x, to the azi-
muthal motion initiated by the magnetic field along &',
and is due to the phenomenon of parametric resonance
[17].

On the basis of Eqgs. (29)—(33), the development to this
stage can be summarized in a few points. The radiant
magnetic emission intensity is predicted to be quadratic
with respect to the input intensity. It may be enhanced by
electronic resonance at A;=0 and is governed secondarily
by a parametric detuning factor [Ay+iI']~L. It can grow to
a value of, at most, one fourth (Rlznaxz 1/4) that of the elec-
tric dipole emission intensity. These findings are in excel-
lent agreement with experimental results [1-3] at inten-
sities ten orders of magnitude below the relativistic
threshold.

To calculate the magnetic susceptibility, and to com-
pare it with the electric susceptibility, we now make use
of Eq. (31).

o M ( - Ne ) @IL, RO RO

m)— =

XUTH, T\ mHy )| 820, + M) (dg + 1)
(—Nuoes) (2IL,|1)I%(1]x[2)

S\ 2m? | (A +iT) (A, + (D)

:| (p11 = P22)

](Pn - p2o)Ey.

(34)

The electric susceptibility x© may similarly be deter-
mined by comparing its defining relationship, namely,

1_ 1 A
P(t) = EPe“"t +he = 580;(@)(- wEe' +hc., (35)

with Eqgs. (10) and (24). This yields
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- 0 Ne?\ | [(1|x|2)PE,
P=2Npuypis= TN o e (p11-p22)  (36)

(Ay+iT§)
and
Ne?\ [(2]x[1)]?
X(e) = —— —.(@_ (37)
ot ) (Aq +il'fy)

In both the expressions (34) and (37), local field renormal-
ization has been ignored. The ratio of magnetic and elec-
tric susceptibilities obtained from these results is

m)(w) ( Mosoe) [(2IL, | 1)]PE,
Xw) \ 2m*h ) (2le[1)(Ag +il(R)
-2 [(2[u ™| DPE e

fic? (2]u@|1)\/AZ + T2

where ¢, —tan‘l(F(m)/Ag). Note that, in the vicinity of
electromc resonance where magnetic dispersion is larg-
est, the magnetic linewidth is expected to be much less
than the parametric detuning factor (F(l'; < Ay). Therefore
¢,=0 and the signs of electric and magnetic dispersion
are opposite, as depicted in Fig. 1. The matrix element in
the numerator of Eq. (38) reflects transformation of the
magnetic susceptibility as a rotation R(y) about the y
axis. According to Eq. (34), the magnetic susceptibility is
also proportional to the electric dipole transition moment.
Hence the matrix elements (2|L,|1) and (1]x|2) must both
be nonzero for optical magnetization to be allowed, and
the electric field amplitude E, must be large for it to be
intense.

Some further comments about selection rules are in or-
der. Explicit evaluation of the magnetic matrix element
between states of well-defined total initial and final angu-
lar momentum /; and [5, respectively, using the Wigner-
Eckart theorem [18], yields

(38)

S

Susceptibility

©
w

4 5
w (10Prad/s)

Fig. 1. Plot of the electric (solid curve) and magnetic (dashed
curve) susceptibilities of a 2-level system with various propor-
tions of optically induced magnetic dipole response. The horizon-
tal axis corresponds to x™(w)=0, and the dashed curves corre-
spond to x™=-x(w)/4 (upper curve at left), and x"™=-x©
X(w)/2 (lower left). The linewidth-to-resonant-frequency ratio is
I'/wy=0.1. All curves assume resonance at \y=500 nm and a
plasma frequency of w,=2x10' rad-s™".
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1
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L, 11
x( ? 1). (39)
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Here a; and a4 refer collectively to any quantum numbers
other than / and m needed to specify the initial and final
states exactly. MD and ED interaction matrix elements
are proportional to the same 3-j symbol, but their reduced
matrix elements transform as rotations about y and
translations along &, respectively. Equation (39) indicates
explicitly that magnetic interactions induced by circularly
polarized components of the B field (¢ =+1) exchange spin
angular momentum of A with the atom. By contrast, lin-
early polarized fields (g=0) exchange no spin angular mo-
mentum with the atom. Nevertheless, at moderate inten-
sities, the combined action of linearly polarized E and B
fields can drive the formation of a parametrically en-
hanced, oscillating ¢transverse orbital angular momentum
as specified by Eq. (31). For this to happen, the reduced
matrix elements of R(y) and x must be simultaneously
nonzero, and the selection rules Al=+1 and Am=m,
—m1=0 must be satisfied.

6. SECOND-HARMONIC AND DC ELECTRIC
DIPOLE PROCESSES

Electric dipole moments can also be generated by the joint
action of optical E and B fields. Two additional processes
emerge from this analysis by considering expectation val-
ues of the electric dipole operator in combination with the
magneto-electric coherences developed in Eqs. (24) and
(25). One process yields a radiant polarization at the
second-harmonic frequency, and the other produces a
static electric dipole in the direction of propagation of
light.

We now consider electric dipole moments that develop
perpendicular to £ and y. A z-directed, magnetically in-
duced electric dipole moment is clearly distinct from ei-
ther the linear electric dipole induced along % or the non-
linear magnetic dipole induced along y. Its macroscopic
polarization is calculated using

P=NTr{i®,p(t)}, (40)
where
29 = 3. (41)

By substituting Eqgs. (24), (25), and (41) into Eq. (40), and
specializing again to the case of linear input polarization,
one finds in the Cartesian lab frame where the charge os-

cillation along z is at a doubled frequency (i.e., [,um)]z
xe~2iel) that

P(t) = NZ(M(zefp(m)(t)p(e) +h.c)
wAL0N ™15 Q8 15
=Nz e~2ot 4 h e,
2(A; + T (wp + il
1 Ol s
+
2 (Aq+iT9)(Ag + Lr("”)

(42)
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This expression for the electric polarization driven jointly
by E and B contains two terms of different frequency. The
first is a field at 2w that generates second-harmonic ra-
diation. Unlike the magnetization at frequency w in Eq.
(31), the second-harmonic signal is longitudinally polar-
ized and lacks the parametric resonance factor [A,
+iI'T"1, so it is expected to produce only weak emission
perpendicular to the pump wave. The second term is a
zero-frequency term that predicts a static charge separa-
tion induced by light in dielectric media illuminated by
moderately intense coherent light. Since it originates
from the oscillatory coherence in Eq. (23) and contains the
same parametric denominator as the magnetization in
Eq. (381), its magnitude is expected to be strongly en-
hanced. In ultrashort pulse interactions, this effect will
therefore generate intense longitudinally polarized tera-
hertz radiation, although conventional phase-matching of
the output will not be possible.

These same optical effects were predicted previously
using steady-state analysis of a classical model of electron
motion subject to external electric and magnetic forcing
fields and Hooke’s law restoring forces [2]. The present
density matrix treatment has the merit of identifying the
relative intensities, detuning dependences, emission fre-
quencies, selection rules, directionality and multipole
character of these effects in an independent, systematic
way that requires no interpretation and is valid near
resonances.

7. MAGNETIC DISPERSION

As one example of an application of these findings, we
now briefly discuss the dispersion of the magnetic dipole
response calculated in Eqgs. (28) and (38) and its connec-
tion with refractive index behavior. The refractive index
of a medium is determined by the relative permittivity e,
and permeability u, according to n= \s’m. Ordinarily the
permeability of dielectrics is very close to the vacuum
value u,=1 at all frequencies, and because it is constant it
does not contribute to dispersion of the index. However,
through the intensity dependence of the magnetic suscep-
tibility XM, the refractive index n(l)
=(1+x©)(1+x™(I)) itself becomes intensity-dependent.
n(I) can therefore be modified using induced magnetic
dispersion, particularly near electronic resonances [19].

x™(I) and x'© have opposite signs and a small phase
shift as illustrated in Fig. 1. Consequently, the main effect
of magnetic dispersion is to reduce the refractive index. In
addition, for a sufficiently sharp electronic resonance at
w=wyq, there is a frequency range on the red (long wave-
length) side of resonance where the optically induced per-
meability u, may acquire negative values.

In the figure, the dashed curves illustrate induced mag-
netic susceptibilities of different magnitudes, near a reso-
nance at \g=500 nm. The linewidth-to-frequency ratio is
arbitrarily taken to be I'/wy=0.1. The plasma frequency
w,=(Ne?/egm,)? is assumed to be w,=2x10'° rad/s,
close to the value for silica. The ratio R=|x"I)/x®| of
magnetic-to-electric susceptibility has a value determined
by the incident intensity and lies between zero and R, .,
=1/2. R is negligible at low intensities, grows linearly at
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intermediate intensities, and eventually reaches R,
at a “saturation” intensity I,,, that is material-dependent
[3]. Above I, the magnetization ceases to grow quadrati-
cally, becoming merely proportional to the incident
intensity rather than to its square. In this “saturation” re-
gime, the magnetic susceptibility therefore maintains a
fixed proportionality with respect to the electric suscepti-
bility.

8. CONCLUSION

The main results of this paper are contained in Eqgs. (31),
(33), and (42). The first of these predicts that light of fre-
quency o induces a coherent oscillatory magnetization
that radiates at frequency w in bound electron systems.
This dynamic magnetization M arises via a quadratic
nonlinearity [20] driven by the product EB of the optical
field amplitudes and can be comparable in magni-
tude to the electric polarization P at high but subrelativ-
istic intensities. Equation (33) shows that the maximum
ratio of magnetic-to-electric susceptibility is R,
=|x"/x®|=1/2, without resorting to classical arguments
based on geometric considerations or Maxwell’s equa-
tions. Thus the maximum intensity of magnetic dipole
emission from insulators, which depends on the square of
the susceptibility, is predicted to be one fourth that from
electric dipole polarization, which is in excellent quanti-
tative agreement with experiments to date. The coher-
ence established by this type of interaction also gives rise
to two other nonlinear optical effects. The first term in
Eq. (42) describes magnetically induced second-harmonic
generation, in which the emitted electric field lies along 2,
parallel to the propagation of the pump light. The second
term is static charge separation. The orientation of the
static electric dipole is again along Z. Finally, we note
that, according to Egs. (31) and (36), the calculated elec-
tric and magnetic susceptibilities have opposite signs
across electronic resonances, indicating that the induced
magnetic response is diamagnetic. As a result, the mag-
netic dispersion that accompanies transverse optical mag-
netization near resonances provides a unique new method
of modifying the refractive index of unstructured dielec-
trics.

The enhancement of magnetic response by a factor
close to the speed of light as described in this work is due
to parametric resonance. This phenomenon manifests it-
self in Eqs. (31) and (42) through the doubled-frequency
detuning parameter Ay, but its impact only becomes ap-
parent in numerical simulations [16]. The result of this
dynamic enhancement is that magnetic dipole response
can be nearly as intense as the electric response at inten-
sities far below the relativistic threshold [21] due to
transfer of energy between the motions associated with
the E and B components of the light field. Physically, this
process requires both an electric dipole transition and a
magnetic dipole transition to be driven on the atom simul-
taneously by linearly polarized incident light. It is there-
fore not surprising that the transverse MD and ED selec-
tion rules require that rotations about y transform the
same way as translations along x, and the MD and ED
transition moments must be nonzero for the same initial
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and final states. This requirement is met for states of dif-
ferent parity in many crystallographic point groups.

In systems that satisfy these symmetry requirements,
an important role can be anticipated for the manipulation
of orbital and spin magnetism by optical waves. In a man-
ner quite different from earlier experiments that demon-
strated ultrafast control over magnetic moments without
applying static magnetic fields [14,22—24], the present re-
sults explain how transverse coherent magnetization can
generate magnetic moments that are eight to ten orders
of magnitude larger than expected, and internal magnetic
fields that are in the Tesla range, by a new process at sub-
relativistic intensities. Since optical modulators can pro-
vide real-time control of the intensity and frequency of
light within large volumes of dielectric material, this find-
ing may enable programmable transformation optics, pro-
longation of coherence times for spintronic circuitry, ul-
trafast reading and writing of magnetic memories, and a
new family of magnetic sensors or imagers. The capability
of creating large magnetic moments or torques at an op-
tical focus in dense systems of bound electrons, including
condensates, should provide new modalities of spin con-
trol for research. Short-period magnetic field distributions
produced by intense standing waves of light may be use-
ful for atom optics or free electron lasers operating at
short wavelengths. The availability of programmable dis-
tributions of intense magnetic fields could be used to im-
prove the fidelity of compact quantum information sys-
tems based on spin qubits. Furthermore, these results
have significant implications for high-field and plasma
science, as well as laser fusion, since they make it clear
that in ultrafast pulse interactions magnetic dynamics
cannot be ignored at pre-pulse intensities even ten orders
of magnitude below the relativistic threshold on very
short timescales. Finally, the existence of a mechanism
whereby light causes static charge separation in noncon-
ducting media has been outlined. This opens the door to
both capacitive and inductive electric power generation
using coherent light.

APPENDIX A

Here it is shown that the maximum value of an off-
diagonal density matrix element in a 2-level system is
one-half. Consider a system described by the wavefunc-
tion

[y = >, ;i) = cos 6]1) + sin 62). (A.1)

Assume that the system is closed so that 2|c;|>=1. Now in-

i
troduce the density matrix elements pijzcic; and rewrite
the closure expression as

Trip}= > pis=Triph=1. (A.2)

The Cauchy—Schwarz inequality dictates that

Sl =Dl el (A.3)
i J k

which in terms of density matrix elements becomes
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Do = 2 0y 2 e =Tr{ph- Tript=1. (A.4)
iy ; %

Writing this out explicitly, we find

(P31 + p3o) +2lp1a> =1, (A.5)

2p1al? = 1= (p31 + ply). (A.6)

Now since p3;=cos* § and p3,=sin? §, the minimum value
of (p3,+p3e), which yields the maximum value of |py5| in
the inequality, may be found by setting its derivative with
respect to 6 is equal to zero:

d
a—é}(pi(&) + p§2(0)) =—4 cos® 0sin 0+ 4 sin® G cos H=0.

(A.7)

This condition is sin 6= +cos 6, and the corresponding so-
lutions for 6 are given by

2n+1)m
),
4

n=0,1,2.... (A.8)

For these values of 6 one finds the minimum sum of the
squared populations to be

(A.9)

(P%l + p§2)min =

N | =

Substitution of Eq. (A.9) into Eq. (A.6) yields |p1o/%,,
=1/4, or

(A.10)

|p12|max =

DN |
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